organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4-Di­nitro­phenyl)-3-(4-methyl­phenyl)-4-phenyl­sulfanyl-1H-pyrazole

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 9 September 2008; accepted 26 September 2008; online 11 October 2008)

In the title compound, C22H16N4O4S, the dihedral angles between the pyrazole ring and the pendant aromatic rings are 26.2 (1), 41.1 (1) and 89.5 (1)°. In the crystal structure, an intermolecular C—H⋯N bond helps to establish the packing. A short C⋯C contact of 3.110 (12) Å is observed between the C atom of the pyrazole CH group and one of the α-C atoms of the 4-methyl­phenyl ring.

Related literature

For related literature, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147-166.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: a Biogenic Approach. New York: Wiley International.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N4O4S

  • Mr = 432.45

  • Monoclinic, P 21 /c

  • a = 7.3802 (3) Å

  • b = 26.6996 (11) Å

  • c = 10.6691 (4) Å

  • β = 106.733 (2)°

  • V = 2013.31 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.963

  • 26409 measured reflections

  • 5987 independent reflections

  • 4104 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.05

  • 5987 reflections

  • 282 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.44 3.2847 (18) 152
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazole derivatives have been reported to possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen,1996) activities.

The ORTEP plot of the structure is shown in Fig. 1. The pyrazole ring adopts planar conformation. The sum of the angles at N1 of the pyrazole ring (359.55°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.319 (2) and 1.352 (2) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The pyrazole ring A and phenyl sulfide ring D are orthogonal with the inter-ring dihedral angle of 89.54 (10)°, whereas the dinitrophenyl and methylphenyl rings are twisted from the pyrazole ring as can be seen from the dihedral angles of 26.18 (10)° and 41.12 (10)°, respectively.

The crystal structure is stabilized by C—H···N types of intra and intermolecular interactions in addition to van der Waals forces. Atom C5 in the molecule at (x, y, z) donates a proton to atom N2 at (x, -1/2 - y, 1/2 + z) to form a one dimensional C4 chain running along c axis (Fig. 2.). Short intermolecular contacts are observed between the atoms C5 and C15 (3.11 Å).

Related literature top

For related literature, see: Baraldi et al. (1998); Beddoes et al. (1986); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Bernstein et al. (1995); Chen & Li (1998); Cordell (1981); Jin et al. (2004); Smith et al. (2001).

Experimental top

A mixture of 1-(4-Methylphenyl)-2-(phenylsulfanyl)-1-ethanone 1-(2,4-dinitrophenyl)hydrazone (0.001 mole) dissolved in dimethylforamide (5 ml) in a 30 ml conical flask was allowed to cool in ice with stirring. To this stirred solution, phosphorus oxychloride (0.008 mole) was added dropwise and the mixture was subjected to microwave irritation for 60 sec. under 40% power with pulse rate 15 sec. The reaction was monitored by TLC and after completion of the reaction, the reaction mixture was poured onto crushed ice. The solid was suction filtered and washed with plenty of water. The final product 1-(2,4-Dinitrophenyl)-3-(4-methylphenyl)-1H-4- pyrazolyl phenyl sulfide was purified by column chromatography silica gel (60–120 mesh) using petroleum ether- ethyl acetate as eluent.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(C) for methyl H and Uiso(H) = 1.2 Ueq(C) other H atoms. The components of the anisotropic displacement parameters of C24 and C25 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.01.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram viewed down c axis.
1-(2,4-Dinitrophenyl)-3-(4-methylphenyl)-4-phenylsulfanyl-1H-pyrazole top
Crystal data top
C22H16N4O4SF(000) = 896
Mr = 432.45Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5342 reflections
a = 7.3802 (3) Åθ = 1.5–30.3°
b = 26.6996 (11) ŵ = 0.20 mm1
c = 10.6691 (4) ÅT = 293 K
β = 106.733 (2)°Block, colorless
V = 2013.31 (14) Å30.25 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5987 independent reflections
Radiation source: fine-focus sealed tube4104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 30.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.951, Tmax = 0.963k = 3637
26409 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.3656P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.039
5987 reflectionsΔρmax = 0.38 e Å3
282 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (13)
Crystal data top
C22H16N4O4SV = 2013.31 (14) Å3
Mr = 432.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3802 (3) ŵ = 0.20 mm1
b = 26.6996 (11) ÅT = 293 K
c = 10.6691 (4) Å0.25 × 0.21 × 0.19 mm
β = 106.733 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5987 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4104 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.963Rint = 0.031
26409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
5987 reflectionsΔρmin = 0.27 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24305 (7)0.133863 (17)0.05946 (4)0.04676 (15)
O10.8025 (2)0.24070 (6)0.22748 (16)0.0669 (4)
O20.8088 (3)0.29587 (8)0.37625 (14)0.0842 (6)
O30.8511 (3)0.46380 (7)0.2362 (2)0.0960 (7)
O40.7256 (4)0.48434 (8)0.0364 (3)0.1256 (9)
N10.4753 (2)0.25931 (5)0.00834 (11)0.0335 (3)
N20.4052 (2)0.24683 (5)0.12163 (11)0.0347 (3)
C30.3241 (2)0.20272 (6)0.12297 (13)0.0322 (3)
C40.3385 (2)0.18664 (6)0.00663 (14)0.0347 (3)
C50.4325 (2)0.22374 (6)0.08542 (14)0.0357 (4)
H50.46230.22460.17620.043*
C60.5566 (2)0.30667 (6)0.04053 (14)0.0345 (3)
C70.6824 (2)0.31920 (7)0.16180 (15)0.0391 (4)
C80.7453 (3)0.36745 (7)0.19047 (19)0.0483 (4)
H80.82430.37570.27280.058*
C90.6891 (3)0.40307 (7)0.0953 (2)0.0502 (5)
C100.5710 (3)0.39244 (7)0.0262 (2)0.0518 (5)
H100.53680.41720.08990.062*
C110.5037 (3)0.34446 (6)0.05236 (17)0.0433 (4)
H110.42090.33710.13400.052*
N120.7691 (2)0.28207 (7)0.26313 (15)0.0524 (4)
N130.7602 (3)0.45433 (7)0.1245 (3)0.0727 (6)
C140.2370 (2)0.17731 (6)0.24803 (14)0.0339 (3)
C150.1349 (2)0.20461 (6)0.35568 (15)0.0384 (4)
H150.11540.23870.34740.046*
C160.0619 (3)0.18132 (7)0.47542 (16)0.0458 (4)
H160.00590.20010.54700.055*
C170.0875 (3)0.13087 (7)0.49080 (16)0.0461 (4)
C180.1858 (3)0.10358 (7)0.38248 (17)0.0460 (4)
H180.20270.06930.39080.055*
C190.2596 (3)0.12621 (6)0.26211 (15)0.0409 (4)
H190.32450.10710.19030.049*
C200.0110 (4)0.10575 (10)0.62168 (19)0.0699 (6)
H20A0.02250.07180.60900.105*
H20B0.10580.10600.66720.105*
H20C0.09910.12340.67230.105*
C210.4319 (3)0.09067 (6)0.09185 (15)0.0452 (4)
C220.5983 (3)0.09830 (8)0.06220 (19)0.0548 (5)
H220.61940.12820.02390.066*
C230.7352 (3)0.06106 (9)0.0897 (2)0.0709 (7)
H230.84780.06580.06860.085*
C240.7049 (4)0.01713 (9)0.1480 (2)0.0782 (7)
H240.79730.00770.16690.094*
C250.5401 (5)0.01001 (9)0.1779 (2)0.0788 (7)
H250.52060.01970.21770.095*
C260.4027 (4)0.04593 (7)0.15001 (19)0.0621 (6)
H260.28960.04050.16990.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0607 (3)0.0369 (2)0.0481 (2)0.0063 (2)0.0242 (2)0.00621 (17)
O10.0606 (10)0.0587 (10)0.0737 (10)0.0097 (8)0.0071 (8)0.0176 (8)
O20.0954 (13)0.1076 (14)0.0373 (7)0.0208 (11)0.0005 (8)0.0040 (8)
O30.0905 (14)0.0649 (11)0.1282 (17)0.0231 (10)0.0248 (12)0.0467 (11)
O40.168 (2)0.0447 (11)0.149 (2)0.0344 (13)0.0217 (18)0.0081 (12)
N10.0451 (8)0.0293 (6)0.0273 (5)0.0015 (6)0.0123 (5)0.0012 (5)
N20.0440 (8)0.0342 (7)0.0267 (6)0.0006 (6)0.0117 (5)0.0003 (5)
C30.0383 (8)0.0296 (8)0.0300 (6)0.0013 (6)0.0118 (6)0.0005 (5)
C40.0464 (9)0.0284 (8)0.0318 (7)0.0010 (7)0.0154 (6)0.0018 (5)
C50.0489 (10)0.0332 (8)0.0275 (6)0.0026 (7)0.0150 (6)0.0019 (6)
C60.0389 (9)0.0305 (8)0.0359 (7)0.0007 (6)0.0137 (6)0.0020 (6)
C70.0380 (9)0.0421 (9)0.0380 (8)0.0018 (7)0.0123 (7)0.0010 (7)
C80.0429 (10)0.0518 (11)0.0507 (10)0.0090 (8)0.0142 (8)0.0163 (8)
C90.0485 (11)0.0332 (9)0.0721 (12)0.0070 (8)0.0226 (10)0.0095 (8)
C100.0588 (12)0.0331 (9)0.0629 (11)0.0011 (8)0.0164 (9)0.0051 (8)
C110.0511 (10)0.0346 (9)0.0421 (8)0.0013 (8)0.0100 (7)0.0020 (7)
N120.0445 (9)0.0629 (11)0.0452 (8)0.0081 (8)0.0055 (7)0.0086 (7)
N130.0709 (13)0.0410 (10)0.1077 (17)0.0137 (9)0.0283 (12)0.0197 (11)
C140.0361 (8)0.0354 (8)0.0305 (7)0.0019 (7)0.0101 (6)0.0009 (6)
C150.0389 (9)0.0377 (9)0.0380 (8)0.0011 (7)0.0104 (7)0.0057 (6)
C160.0433 (10)0.0562 (11)0.0336 (7)0.0003 (8)0.0043 (7)0.0085 (7)
C170.0450 (10)0.0574 (11)0.0337 (7)0.0060 (9)0.0079 (7)0.0058 (7)
C180.0543 (11)0.0395 (9)0.0419 (8)0.0010 (8)0.0101 (8)0.0079 (7)
C190.0490 (10)0.0371 (9)0.0331 (7)0.0037 (7)0.0064 (7)0.0001 (6)
C200.0766 (16)0.0857 (17)0.0393 (9)0.0105 (13)0.0040 (10)0.0183 (10)
C210.0660 (13)0.0320 (8)0.0312 (7)0.0041 (8)0.0037 (8)0.0015 (6)
C220.0586 (13)0.0430 (11)0.0522 (10)0.0016 (9)0.0009 (9)0.0016 (8)
C230.0576 (14)0.0649 (15)0.0721 (14)0.0066 (11)0.0098 (11)0.0138 (12)
C240.0903 (16)0.0486 (13)0.0683 (14)0.0214 (12)0.0207 (12)0.0075 (11)
C250.1190 (19)0.0403 (12)0.0612 (13)0.0079 (13)0.0006 (13)0.0060 (10)
C260.0971 (18)0.0356 (10)0.0508 (10)0.0017 (11)0.0168 (11)0.0063 (8)
Geometric parameters (Å, º) top
S1—C41.7401 (16)C14—C151.386 (2)
S1—C211.765 (2)C14—C191.388 (2)
O1—N121.217 (2)C15—C161.383 (2)
O2—N121.214 (2)C15—H150.9300
O3—N131.214 (3)C16—C171.377 (3)
O4—N131.205 (3)C16—H160.9300
N1—C51.3519 (19)C17—C181.382 (3)
N1—N21.3741 (16)C17—C201.505 (2)
N1—C61.399 (2)C18—C191.381 (2)
N2—C31.319 (2)C18—H180.9300
C3—C41.4223 (19)C19—H190.9300
C3—C141.470 (2)C20—H20A0.9600
C4—C51.354 (2)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C111.389 (2)C21—C221.368 (3)
C6—C71.399 (2)C21—C261.391 (3)
C7—C81.374 (3)C22—C231.387 (3)
C7—N121.470 (2)C22—H220.9300
C8—C91.366 (3)C23—C241.376 (4)
C8—H80.9300C23—H230.9300
C9—C101.368 (3)C24—C251.356 (4)
C9—N131.467 (3)C24—H240.9300
C10—C111.373 (3)C25—C261.365 (4)
C10—H100.9300C25—H250.9300
C11—H110.9300C26—H260.9300
C4—S1—C21102.82 (9)C19—C14—C3121.15 (14)
C5—N1—N2110.95 (12)C16—C15—C14120.23 (16)
C5—N1—C6130.11 (12)C16—C15—H15119.9
N2—N1—C6118.49 (12)C14—C15—H15119.9
C3—N2—N1105.38 (11)C17—C16—C15121.31 (16)
N2—C3—C4110.62 (13)C17—C16—H16119.3
N2—C3—C14120.03 (12)C15—C16—H16119.3
C4—C3—C14129.34 (14)C16—C17—C18118.25 (15)
C5—C4—C3105.32 (13)C16—C17—C20121.27 (18)
C5—C4—S1125.04 (11)C18—C17—C20120.48 (19)
C3—C4—S1129.45 (12)C19—C18—C17121.21 (17)
N1—C5—C4107.69 (13)C19—C18—H18119.4
N1—C5—H5126.2C17—C18—H18119.4
C4—C5—H5126.2C18—C19—C14120.21 (15)
C11—C6—C7117.49 (15)C18—C19—H19119.9
C11—C6—N1117.95 (14)C14—C19—H19119.9
C7—C6—N1124.52 (14)C17—C20—H20A109.5
C8—C7—C6121.46 (16)C17—C20—H20B109.5
C8—C7—N12114.90 (16)H20A—C20—H20B109.5
C6—C7—N12123.46 (15)C17—C20—H20C109.5
C9—C8—C7118.47 (17)H20A—C20—H20C109.5
C9—C8—H8120.8H20B—C20—H20C109.5
C7—C8—H8120.8C22—C21—C26119.7 (2)
C8—C9—C10122.32 (17)C22—C21—S1124.62 (14)
C8—C9—N13118.6 (2)C26—C21—S1115.67 (17)
C10—C9—N13119.12 (19)C21—C22—C23119.4 (2)
C9—C10—C11118.73 (18)C21—C22—H22120.3
C9—C10—H10120.6C23—C22—H22120.3
C11—C10—H10120.6C24—C23—C22120.2 (3)
C10—C11—C6121.46 (17)C24—C23—H23119.9
C10—C11—H11119.3C22—C23—H23119.9
C6—C11—H11119.3C25—C24—C23120.0 (2)
O2—N12—O1124.99 (19)C25—C24—H24120.0
O2—N12—C7117.12 (19)C23—C24—H24120.0
O1—N12—C7117.82 (15)C24—C25—C26120.7 (2)
O4—N13—O3124.1 (2)C24—C25—H25119.6
O4—N13—C9118.2 (2)C26—C25—H25119.6
O3—N13—C9117.8 (2)C25—C26—C21120.0 (3)
C15—C14—C19118.75 (14)C25—C26—H26120.0
C15—C14—C3120.07 (14)C21—C26—H26120.0
C5—N1—N2—C31.74 (18)C8—C7—N12—O234.3 (2)
N2—N1—N2—C30 (64)C6—C7—N12—O2150.55 (18)
C6—N1—N2—C3174.80 (14)C8—C7—N12—O1142.78 (18)
N1—N2—C3—C40.97 (18)C6—C7—N12—O132.4 (3)
N1—N2—C3—C14178.58 (14)C8—C9—N13—O4172.7 (2)
N2—C3—C4—C50.11 (19)C10—C9—N13—O46.6 (3)
C14—C3—C4—C5179.60 (16)C8—C9—N13—O37.0 (3)
N2—C3—C4—S1175.28 (13)C10—C9—N13—O3173.7 (2)
C14—C3—C4—S15.2 (3)N2—C3—C14—C1539.9 (2)
C21—S1—C4—C589.59 (16)C4—C3—C14—C15140.64 (18)
C21—S1—C4—C396.11 (16)N2—C3—C14—C19138.13 (17)
N2—N1—C5—C41.85 (19)C4—C3—C14—C1941.3 (3)
C6—N1—C5—C4173.86 (16)C19—C14—C15—C161.8 (2)
C3—C4—C5—N11.17 (18)C3—C14—C15—C16176.31 (15)
S1—C4—C5—N1176.61 (12)C14—C15—C16—C170.3 (3)
C5—N1—C6—C11148.40 (17)C15—C16—C17—C181.1 (3)
N2—N1—C6—C1123.1 (2)C15—C16—C17—C20178.87 (18)
C5—N1—C6—C729.1 (3)C16—C17—C18—C191.0 (3)
N2—N1—C6—C7159.39 (15)C20—C17—C18—C19178.95 (19)
C11—C6—C7—C82.8 (2)C17—C18—C19—C140.5 (3)
N1—C6—C7—C8174.74 (16)C15—C14—C19—C181.9 (3)
C11—C6—C7—N12172.09 (16)C3—C14—C19—C18176.21 (16)
N1—C6—C7—N1210.4 (3)C4—S1—C21—C227.65 (17)
C6—C7—C8—C93.0 (3)C4—S1—C21—C26173.29 (14)
N12—C7—C8—C9172.26 (17)C26—C21—C22—C230.5 (3)
C7—C8—C9—C100.9 (3)S1—C21—C22—C23178.52 (15)
C7—C8—C9—N13178.39 (18)C21—C22—C23—C240.9 (3)
C8—C9—C10—C111.3 (3)C22—C23—C24—C250.5 (3)
N13—C9—C10—C11179.38 (18)C23—C24—C25—C260.4 (4)
C9—C10—C11—C61.5 (3)C24—C25—C26—C210.8 (3)
C7—C6—C11—C100.5 (3)C22—C21—C26—C250.4 (3)
N1—C6—C11—C10177.22 (17)S1—C21—C26—C25179.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.443.2847 (18)152
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H16N4O4S
Mr432.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3802 (3), 26.6996 (11), 10.6691 (4)
β (°) 106.733 (2)
V3)2013.31 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.951, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
26409, 5987, 4104
Rint0.031
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.05
No. of reflections5987
No. of parameters282
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.443.2847 (18)151.7
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–166.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: a Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds