metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyridine-κN1)silver(I) nitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 September 2008; accepted 26 September 2008; online 4 October 2008)

The asymmetric unit of the title compound, [Ag(C5H6N2)2]NO3, consists of one and a half each of both cations and anions, the other halves being generated by crystallographic inversion centres. One of the AgI atoms lies on an inversion center and one of the nitrate ions is disordered across an inversion center. Each AgI atom is bicoordinated in a linear geometry by two N atoms from two 2-amino­pyridine ligands. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to (001) by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background, see: Kristiansson (2000[Kristiansson, O. (2000). Acta Cryst. C56, 165-167.]); Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton: Merck & Co. Inc.]). For related structures, see: Deng et al. (2004[Deng, B., Liu, Z.-D., Liu, X.-Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1444-m1446.]); Yang et al.(2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1215-m1217.]). For bond-length data, see: Allen et al.(1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Jebas et al. (2007[Jebas, S. R., Balasubramanian, T. & Slawin, A. M. Z. (2007). Acta Cryst. E63, m1624-m1626.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H6N2)2]NO3

  • Mr = 358.12

  • Monoclinic, C 2/c

  • a = 43.3371 (10) Å

  • b = 5.8517 (1) Å

  • c = 15.1632 (3) Å

  • β = 100.502 (1)°

  • V = 3780.91 (13) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 100.0 (1) K

  • 0.71 × 0.31 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.394, Tmax = 0.782

  • 42747 measured reflections

  • 9821 independent reflections

  • 8093 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 1.06

  • 9821 reflections

  • 293 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1N6⋯O2i 0.83 (3) 2.22 (3) 3.016 (2) 160 (3)
N4—H1N4⋯O3ii 0.82 (3) 2.11 (3) 2.879 (2) 157 (3)
N6—H2N6⋯O3iii 0.89 (3) 1.99 (3) 2.873 (2) 169 (2)
N4—H2N4⋯O1iv 0.82 (3) 2.12 (3) 2.934 (3) 173 (3)
N2—H1N2⋯O4v 0.83 (4) 2.32 (4) 3.102 (3) 159 (3)
N2—H1N2⋯O5v 0.83 (4) 2.55 (4) 3.282 (4) 148 (3)
N2—H2N2⋯O5vi 0.84 (1) 1.95 (1) 2.767 (4) 161 (3)
N2—H2N2⋯O4 0.85 (4) 2.49 (2) 3.210 (4) 144 (3)
C1—H1A⋯O3ii 0.93 2.41 3.183 (2) 140
C6—H6A⋯O5vi 0.93 2.43 3.250 (4) 147
C13—H13A⋯O1iv 0.93 2.52 3.406 (2) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). The silver(I) ion exhibits a large flexibility in its coordination with nitrogen-containing aromatic ligands, with coordination numbers ranging from two to eight (Kristiansson, 2000). As a part of our investigation on the binding modes of 2-aminopyridine with the metals, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one and a half of both [Ag(C5H6N2)2]+ cation and nitrate anion. The other halves of the cation and anion are generated by crystallographic inversion centres. The Ag2 atom lies on an inversion center. Each AgI atom is bicoordinated in a linear geometry by two N atoms from two 2-aminopyridine ligands, with an N—Ag—N angle of 175.97 (6)° or 180°. Similar coordination is observed in bis(2-aminopyridine-κN1)silver(I) hexafluoroarsenate (Yang et al., 2004) and bis(2-aminopyridine-κN1)silver(I) perchlorate (Deng et al., 2004). The bond lengths in 2-aminopyridine ligands are found to have normal values (Jebas et al., 2007; Allen et al., 1987).

In the crystal structure, the cations and anions are linked by N—H···O and C—H···O hydrogen bonds (Table 1), generating a two-dimensional network parallel to the (001) [Fig.2].

Related literature top

For general background, see: Kristiansson (2000); Windholz (1976). For related structures, see: Deng et al. (2004); Yang et al.(2004). For bond-length data, see: Allen et al.(1987); Jebas et al. (2007).

Experimental top

2-Aminopyridine in water and silver nitrate in ammonia solution in a molar ratio of 1:1 were mixed with each other and refluxed at 343 K for 6 h. Yellow crystals were obtained after a month on slow evaporation.

Refinement top

The amino H atoms were located in a difference map and allowed to refine freely, with the N2-H1N2 distance restrained to 0.85 Å. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). One of the nitrate ion is disordered across an inversion center at (1/4, 1/4, 1/2), with equal occupancy.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Both components of the disordered nitrate ion are shown.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the c axis. Dashed lines indicate hydrogen bonding.
Bis(2-aminopyridine-κN1)silver(I) nitrate top
Crystal data top
[Ag(C5H6N2)2]NO3F(000) = 2136
Mr = 358.12Dx = 1.887 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9946 reflections
a = 43.3371 (10) Åθ = 2.7–38.4°
b = 5.8517 (1) ŵ = 1.61 mm1
c = 15.1632 (3) ÅT = 100 K
β = 100.502 (1)°Block, yellow
V = 3780.91 (13) Å30.71 × 0.31 × 0.16 mm
Z = 12
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9821 independent reflections
Radiation source: fine-focus sealed tube8093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 37.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 7474
Tmin = 0.394, Tmax = 0.783k = 99
42747 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0208P)2 + 7.8111P]
where P = (Fo2 + 2Fc2)/3
9821 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.91 e Å3
3 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Ag(C5H6N2)2]NO3V = 3780.91 (13) Å3
Mr = 358.12Z = 12
Monoclinic, C2/cMo Kα radiation
a = 43.3371 (10) ŵ = 1.61 mm1
b = 5.8517 (1) ÅT = 100 K
c = 15.1632 (3) Å0.71 × 0.31 × 0.16 mm
β = 100.502 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8093 reflections with I > 2σ(I)
Tmin = 0.394, Tmax = 0.783Rint = 0.032
42747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.91 e Å3
9821 reflectionsΔρmin = 1.23 e Å3
293 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.167632 (4)0.28414 (2)0.419586 (9)0.03102 (4)
Ag20.00000.50000.00000.02259 (4)
N10.15484 (3)0.5267 (2)0.51229 (9)0.0210 (2)
N20.20046 (5)0.7366 (4)0.52126 (17)0.0409 (5)
N30.17820 (3)0.0248 (2)0.32997 (10)0.0224 (2)
N40.12990 (4)0.1493 (3)0.32282 (14)0.0315 (3)
N50.02529 (3)0.2267 (2)0.06994 (9)0.0186 (2)
N60.04353 (4)0.1195 (3)0.05863 (9)0.0219 (2)
C10.12630 (4)0.5008 (3)0.53532 (12)0.0266 (3)
H1A0.11520.36760.51770.032*
C20.11291 (5)0.6585 (4)0.58280 (13)0.0342 (4)
H2A0.09330.63300.59780.041*
C30.12946 (5)0.8586 (4)0.60815 (14)0.0378 (5)
H3A0.12070.97150.63920.045*
C40.15844 (5)0.8889 (3)0.58741 (14)0.0337 (4)
H4A0.16971.02200.60450.040*
C50.17137 (4)0.7160 (3)0.53960 (12)0.0245 (3)
C60.20720 (4)0.0221 (3)0.30857 (14)0.0289 (3)
H6A0.22030.14630.32560.035*
C70.21823 (5)0.1526 (4)0.26346 (16)0.0358 (4)
H7A0.23820.14660.24940.043*
C80.19870 (5)0.3410 (4)0.23897 (14)0.0309 (4)
H8A0.20570.46380.20890.037*
C90.16925 (4)0.3435 (3)0.25950 (12)0.0247 (3)
H9A0.15610.46830.24400.030*
C100.15902 (4)0.1544 (3)0.30455 (11)0.0213 (3)
C110.02265 (4)0.1836 (3)0.15608 (11)0.0243 (3)
H11A0.01250.29080.18590.029*
C120.03415 (4)0.0094 (3)0.20150 (11)0.0257 (3)
H12A0.03210.03210.26080.031*
C130.04910 (4)0.1712 (3)0.15613 (12)0.0241 (3)
H13A0.05690.30540.18480.029*
C140.05227 (4)0.1310 (3)0.06904 (11)0.0211 (3)
H14A0.06210.23790.03810.025*
C150.04047 (3)0.0740 (3)0.02689 (10)0.0168 (2)
N70.42167 (4)0.8502 (3)0.16126 (10)0.0247 (3)
O10.40629 (4)0.9276 (3)0.21680 (11)0.0424 (4)
O20.44689 (4)0.9364 (3)0.15093 (11)0.0398 (4)
O30.41119 (3)0.6776 (2)0.11617 (9)0.0267 (2)
N80.25139 (8)0.2036 (5)0.5180 (2)0.0269 (6)0.50
O40.22809 (7)0.2267 (5)0.52820 (18)0.0835 (9)
O50.26419 (7)0.0502 (5)0.5660 (2)0.0338 (6)0.50
H1N60.0430 (6)0.253 (5)0.0764 (19)0.034 (7)*
H1N40.1229 (7)0.034 (6)0.343 (2)0.045 (8)*
H2N60.0566 (6)0.034 (4)0.0839 (17)0.028 (6)*
H2N40.1184 (7)0.260 (5)0.310 (2)0.042 (8)*
H1N20.2107 (8)0.854 (6)0.536 (2)0.061 (10)*
H2N20.2088 (7)0.625 (4)0.499 (2)0.049 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05014 (9)0.01987 (6)0.02380 (6)0.00820 (6)0.00876 (6)0.00160 (5)
Ag20.02482 (7)0.02088 (8)0.02184 (7)0.00686 (6)0.00365 (6)0.00096 (6)
N10.0244 (6)0.0182 (6)0.0196 (5)0.0011 (5)0.0020 (5)0.0018 (4)
N20.0327 (9)0.0262 (8)0.0647 (14)0.0056 (7)0.0116 (9)0.0090 (9)
N30.0251 (6)0.0194 (6)0.0220 (6)0.0003 (5)0.0024 (5)0.0025 (5)
N40.0265 (7)0.0261 (7)0.0442 (10)0.0002 (6)0.0124 (7)0.0056 (7)
N50.0197 (5)0.0196 (6)0.0166 (5)0.0014 (5)0.0037 (4)0.0017 (4)
N60.0282 (6)0.0204 (6)0.0183 (5)0.0042 (5)0.0081 (5)0.0010 (5)
C10.0225 (7)0.0304 (8)0.0248 (7)0.0002 (7)0.0009 (6)0.0001 (6)
C20.0263 (8)0.0494 (12)0.0262 (8)0.0118 (8)0.0030 (6)0.0016 (8)
C30.0428 (11)0.0406 (11)0.0260 (8)0.0212 (9)0.0039 (8)0.0110 (8)
C40.0417 (10)0.0204 (8)0.0329 (9)0.0063 (7)0.0095 (8)0.0080 (7)
C50.0275 (7)0.0171 (6)0.0268 (7)0.0005 (6)0.0005 (6)0.0011 (6)
C60.0232 (7)0.0269 (8)0.0353 (9)0.0029 (6)0.0019 (6)0.0072 (7)
C70.0227 (8)0.0390 (11)0.0457 (11)0.0027 (8)0.0058 (7)0.0105 (9)
C80.0331 (9)0.0270 (8)0.0310 (9)0.0073 (7)0.0016 (7)0.0077 (7)
C90.0299 (8)0.0179 (6)0.0236 (7)0.0009 (6)0.0025 (6)0.0004 (6)
C100.0238 (7)0.0186 (6)0.0205 (6)0.0012 (6)0.0015 (5)0.0028 (5)
C110.0243 (7)0.0312 (8)0.0178 (6)0.0029 (6)0.0052 (5)0.0023 (6)
C120.0255 (7)0.0350 (9)0.0161 (6)0.0027 (7)0.0023 (5)0.0034 (6)
C130.0223 (7)0.0257 (8)0.0227 (7)0.0014 (6)0.0002 (5)0.0064 (6)
C140.0226 (6)0.0185 (6)0.0224 (7)0.0012 (5)0.0044 (5)0.0015 (5)
C150.0170 (5)0.0169 (6)0.0164 (5)0.0009 (5)0.0024 (4)0.0017 (5)
N70.0315 (7)0.0195 (6)0.0218 (6)0.0061 (5)0.0011 (5)0.0018 (5)
O10.0510 (9)0.0404 (8)0.0358 (8)0.0172 (8)0.0082 (7)0.0138 (7)
O20.0404 (8)0.0332 (8)0.0431 (8)0.0102 (7)0.0008 (6)0.0149 (7)
O30.0302 (6)0.0249 (6)0.0254 (6)0.0021 (5)0.0061 (5)0.0067 (5)
N80.0210 (12)0.0245 (17)0.0309 (17)0.0005 (12)0.0069 (12)0.0071 (11)
O40.106 (2)0.0855 (18)0.0630 (15)0.0602 (17)0.0273 (14)0.0217 (13)
O50.0347 (14)0.0324 (14)0.0329 (14)0.0093 (12)0.0026 (11)0.0020 (12)
Geometric parameters (Å, º) top
Ag1—N12.1406 (14)C4—H4A0.93
Ag1—N32.1413 (14)C6—C71.364 (3)
Ag2—N5i2.1115 (14)C6—H6A0.93
Ag2—N52.1115 (14)C7—C81.398 (3)
N1—C51.343 (2)C7—H7A0.93
N1—C11.354 (2)C8—C91.368 (3)
N2—C51.345 (3)C8—H8A0.93
N2—H1N20.83 (4)C9—C101.414 (2)
N2—H2N20.85 (4)C9—H9A0.93
N3—C101.350 (2)C11—C121.369 (3)
N3—C61.354 (2)C11—H11A0.93
N4—C101.341 (2)C12—C131.397 (3)
N4—H1N40.82 (3)C12—H12A0.93
N4—H2N40.82 (3)C13—C141.373 (2)
N5—C151.3473 (19)C13—H13A0.93
N5—C111.355 (2)C14—C151.411 (2)
N6—C151.354 (2)C14—H14A0.93
N6—H1N60.83 (3)N7—O21.239 (2)
N6—H2N60.89 (3)N7—O11.250 (2)
C1—C21.363 (3)N7—O31.257 (2)
C1—H1A0.93N8—N8ii0.764 (6)
C2—C31.390 (4)N8—O41.058 (4)
C2—H2A0.93N8—O51.223 (4)
C3—C41.361 (3)N8—O4ii1.294 (5)
C3—H3A0.93O4—N8ii1.294 (5)
C4—C51.418 (3)
N1—Ag1—N3175.97 (6)N3—C6—C7123.67 (17)
N5i—Ag2—N5180.00 (10)N3—C6—H6A118.2
C5—N1—C1118.27 (15)C7—C6—H6A118.2
C5—N1—Ag1124.21 (12)C6—C7—C8118.27 (18)
C1—N1—Ag1116.97 (12)C6—C7—H7A120.9
C5—N2—H1N2120 (2)C8—C7—H7A120.9
C5—N2—H2N2120 (2)C9—C8—C7119.52 (17)
H1N2—N2—H2N2120 (3)C9—C8—H8A120.2
C10—N3—C6118.18 (15)C7—C8—H8A120.2
C10—N3—Ag1122.67 (11)C8—C9—C10119.31 (17)
C6—N3—Ag1118.41 (12)C8—C9—H9A120.3
C10—N4—H1N4121 (2)C10—C9—H9A120.3
C10—N4—H2N4119 (2)N4—C10—N3118.52 (16)
H1N4—N4—H2N4119 (3)N4—C10—C9120.47 (17)
C15—N5—C11118.54 (14)N3—C10—C9121.01 (16)
C15—N5—Ag2120.92 (10)N5—C11—C12123.47 (16)
C11—N5—Ag2119.85 (11)N5—C11—H11A118.3
C15—N6—H1N6119.7 (19)C12—C11—H11A118.3
C15—N6—H2N6118.9 (16)C11—C12—C13118.07 (15)
H1N6—N6—H2N6112 (2)C11—C12—H12A121.0
N1—C1—C2123.88 (19)C13—C12—H12A121.0
N1—C1—H1A118.1C14—C13—C12119.62 (16)
C2—C1—H1A118.1C14—C13—H13A120.2
C1—C2—C3117.93 (19)C12—C13—H13A120.2
C1—C2—H2A121.0C13—C14—C15119.34 (15)
C3—C2—H2A121.0C13—C14—H14A120.3
C4—C3—C2119.80 (18)C15—C14—H14A120.3
C4—C3—H3A120.1N5—C15—N6118.38 (14)
C2—C3—H3A120.1N5—C15—C14120.90 (14)
C3—C4—C5119.50 (19)N6—C15—C14120.71 (14)
C3—C4—H4A120.2O2—N7—O1121.89 (18)
C5—C4—H4A120.2O2—N7—O3119.84 (16)
N1—C5—N2118.52 (18)O1—N7—O3118.26 (17)
N1—C5—C4120.53 (17)O4—N8—O5110.4 (4)
N2—C5—C4120.94 (19)
C5—N1—C1—C21.7 (3)C6—N3—C10—C92.1 (2)
Ag1—N1—C1—C2170.08 (15)Ag1—N3—C10—C9167.90 (12)
N1—C1—C2—C30.7 (3)C8—C9—C10—N4177.81 (18)
C1—C2—C3—C41.7 (3)C8—C9—C10—N32.1 (3)
C2—C3—C4—C50.4 (3)C15—N5—C11—C121.1 (3)
C1—N1—C5—N2176.31 (18)Ag2—N5—C11—C12169.43 (14)
Ag1—N1—C5—N212.5 (2)N5—C11—C12—C130.7 (3)
C1—N1—C5—C43.1 (3)C11—C12—C13—C141.1 (3)
Ag1—N1—C5—C4168.05 (13)C12—C13—C14—C150.3 (2)
C3—C4—C5—N12.1 (3)C11—N5—C15—N6178.89 (15)
C3—C4—C5—N2177.3 (2)Ag2—N5—C15—N610.64 (19)
C10—N3—C6—C70.6 (3)C11—N5—C15—C142.6 (2)
Ag1—N3—C6—C7169.84 (18)Ag2—N5—C15—C14167.88 (11)
N3—C6—C7—C80.9 (3)C13—C14—C15—N52.2 (2)
C6—C7—C8—C90.9 (3)C13—C14—C15—N6179.32 (15)
C7—C8—C9—C100.5 (3)O5—N8—O4—N8ii177.8 (7)
C6—N3—C10—N4177.77 (17)O4ii—N8—O4—N8ii0.0
Ag1—N3—C10—N412.2 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···O2iii0.83 (3)2.22 (3)3.016 (2)160 (3)
N4—H1N4···O3iv0.82 (3)2.11 (3)2.879 (2)157 (3)
N6—H2N6···O3v0.89 (3)1.99 (3)2.873 (2)169 (2)
N4—H2N4···O1vi0.82 (3)2.12 (3)2.934 (3)173 (3)
N2—H1N2···O4vii0.83 (4)2.32 (4)3.102 (3)159 (3)
N2—H1N2···O5vii0.83 (4)2.55 (4)3.282 (4)148 (3)
N2—H2N2···O5ii0.84 (1)1.95 (1)2.767 (4)161 (3)
N2—H2N2···O40.85 (4)2.49 (2)3.210 (4)144 (3)
C1—H1A···O3iv0.932.413.183 (2)140
C6—H6A···O5ii0.932.433.250 (4)147
C13—H13A···O1vi0.932.523.406 (2)159
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y3/2, z+1/2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C5H6N2)2]NO3
Mr358.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)43.3371 (10), 5.8517 (1), 15.1632 (3)
β (°) 100.502 (1)
V3)3780.91 (13)
Z12
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.71 × 0.31 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.394, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
42747, 9821, 8093
Rint0.032
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.06
No. of reflections9821
No. of parameters293
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 1.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···O2i0.83 (3)2.22 (3)3.016 (2)160 (3)
N4—H1N4···O3ii0.82 (3)2.11 (3)2.879 (2)157 (3)
N6—H2N6···O3iii0.89 (3)1.99 (3)2.873 (2)169 (2)
N4—H2N4···O1iv0.82 (3)2.12 (3)2.934 (3)173 (3)
N2—H1N2···O4v0.83 (4)2.32 (4)3.102 (3)159 (3)
N2—H1N2···O5v0.83 (4)2.55 (4)3.282 (4)148 (3)
N2—H2N2···O5vi0.84 (1)1.95 (1)2.767 (4)161 (3)
N2—H2N2···O40.85 (4)2.49 (2)3.210 (4)144 (3)
C1—H1A···O3ii0.932.413.183 (2)140
C6—H6A···O5vi0.932.433.250 (4)147
C13—H13A···O1iv0.932.523.406 (2)159
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y3/2, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

H-KF thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, B., Liu, Z.-D., Liu, X.-Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1444–m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Slawin, A. M. Z. (2007). Acta Cryst. E63, m1624–m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKristiansson, O. (2000). Acta Cryst. C56, 165–167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Boca Raton: Merck & Co. Inc.  Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1215–m1217.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds