organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

But-2-enal 2,4-di­nitro­phenyl­hydrazone

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 9 October 2008; accepted 13 October 2008; online 22 October 2008)

In the title compound, C10H10N4O4, the but-2-enal chain is almost planar, the largest deviation from the mean plane being 0.013 (1) Å, and this plane makes a dihedral angle of 9.95 (24)° with the benzene ring,. Of the two nitro groups, one is twisted with respect to the benzene ring, making a dihedral angle of 5.7 (1)°, whereas the other is nearly in the plane of the benzene ring, with a twist angle of only 0.7 (1)°. This difference is related to the occurence of an intra­molecular N—H⋯O hydrogen bond with the O atom of the less twisted nitro group. The NH group is also involved in a weak inter­action with the same O atom of a symmetry-related mol­ecule, thus forming a pseudo inversion dimer.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For related structures, see: Bolte & Dill (1998[Bolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.]); Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O4

  • Mr = 250.22

  • Monoclinic, P 21 /c

  • a = 4.6699 (8) Å

  • b = 13.188 (2) Å

  • c = 18.880 (3) Å

  • β = 92.565 (3)°

  • V = 1161.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.976

  • 9152 measured reflections

  • 2458 independent reflections

  • 1326 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 0.95

  • 2458 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.02 2.6314 (18) 127
N2—H2⋯O1i 0.86 2.52 3.331 (2) 159
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,4-Dinitrophenylhydrazine has applications in organic synthesis and some of its derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). Some phenylhydrazone derivatives have been synthesized in our laboratory. As part of our work, we report the synthesis and crystal structure of the title compound(I).

In the title compound, the but-2-enal chain is planar with the largest deviation from the mean plane being 0.013 (1)Å at C1. This plane makes a dihedral angle of 9.95 (24)° with the benzene ring, so the whole molecule is roughly planar (Fig. 1). Of the the two nitro groups, one is twisted with respect to the benzene ring making a dihedral angle of 5.7 (1)° whereas the other is nearly in the plane of the benzene ring with a twist angle of only 0.7 (1)°. This difference is related to the occurence of an intramolecular hydrogen N-H···bond with the O atom of the less twisted nitro group (Table 1). The NH is also in weak intermolecular interaction with the same O atom of a symmetry related molecule building a pseudo dimer (Table 1, Fig. 2).

Bond lengths and bond angles are consistent with those of other dinitrophenylhydrazone derivatives(Ohba,1996; Bolte & Dill, 1998)

Related literature top

For general background, see: Okabe et al. (1993). For related structures, see: Bolte & Dill (1998); Ohba (1996).

Experimental top

2,4-Dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, but-2-enal (1 mmol 0.070 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in methanol, red single crystals of (I) was obtained after two weeks.

Refinement top

H atoms were placed in calculated position and treated as riding with C—H= 0.93Å (aromatic), 0.96Å(methyl) and N-H= 0.86\%A with Uiso(H)=1.2Ueq(C,N) or Uiso(H)=1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii. Intramolecular H bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of pseudo dimer through weak intermolecular N-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.[Symmetry code: (i) -x+1, -y+1, -z]
But-2-enal 2,4-dinitrophenylhydrazone top
Crystal data top
C10H10N4O4F(000) = 520
Mr = 250.22Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1673 reflections
a = 4.6699 (8) Åθ = 2.1–25.5°
b = 13.188 (2) ŵ = 0.11 mm1
c = 18.880 (3) ÅT = 293 K
β = 92.565 (3)°Block, red
V = 1161.6 (3) Å30.27 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2458 independent reflections
Radiation source: sealed tube1326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 55
Tmin = 0.972, Tmax = 0.976k = 1616
9152 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C10H10N4O4V = 1161.6 (3) Å3
Mr = 250.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6699 (8) ŵ = 0.11 mm1
b = 13.188 (2) ÅT = 293 K
c = 18.880 (3) Å0.27 × 0.23 × 0.23 mm
β = 92.565 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1326 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.976Rint = 0.039
9152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.95Δρmax = 0.16 e Å3
2458 reflectionsΔρmin = 0.11 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0380 (3)0.35052 (10)0.11439 (8)0.0607 (4)
N20.1292 (3)0.44685 (9)0.09740 (8)0.0563 (4)
H20.26130.45520.06760.068*
N30.2785 (3)0.65667 (11)0.05938 (8)0.0554 (4)
N40.3915 (4)0.77803 (13)0.22849 (9)0.0673 (5)
O10.4042 (3)0.58766 (9)0.02881 (7)0.0693 (4)
O20.3266 (3)0.74610 (9)0.04720 (8)0.0761 (4)
O30.5851 (3)0.75891 (12)0.26884 (9)0.0872 (5)
O40.3125 (3)0.86398 (12)0.21507 (9)0.0909 (5)
C10.1822 (6)0.01443 (14)0.09371 (14)0.1054 (9)
H1A0.01570.01910.12160.158*
H1B0.34280.04490.11910.158*
H1C0.14690.04920.04950.158*
C20.2468 (5)0.09525 (15)0.07954 (12)0.0770 (6)
H220.40030.10890.05130.092*
C30.1060 (5)0.17380 (13)0.10341 (10)0.0651 (5)
H30.05120.16150.13070.078*
C40.1811 (4)0.27691 (12)0.08969 (10)0.0585 (5)
H40.33700.29060.06230.070*
C50.0079 (4)0.52752 (12)0.12821 (9)0.0497 (4)
C60.0733 (4)0.63020 (12)0.11150 (9)0.0506 (4)
C70.0580 (4)0.71065 (13)0.14479 (10)0.0539 (5)
H70.01310.77710.13300.065*
C80.2534 (4)0.69186 (13)0.19495 (10)0.0556 (5)
C90.3232 (4)0.59241 (15)0.21334 (10)0.0603 (5)
H90.45620.58060.24760.072*
C100.1960 (4)0.51299 (13)0.18104 (10)0.0582 (5)
H100.24390.44730.19390.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0727 (10)0.0384 (8)0.0716 (10)0.0054 (7)0.0084 (8)0.0014 (7)
N20.0651 (9)0.0405 (8)0.0639 (9)0.0042 (7)0.0116 (7)0.0008 (7)
N30.0681 (10)0.0380 (8)0.0602 (9)0.0009 (7)0.0032 (8)0.0008 (7)
N40.0677 (11)0.0668 (12)0.0670 (11)0.0122 (9)0.0015 (9)0.0095 (9)
O10.0902 (10)0.0448 (7)0.0747 (9)0.0027 (7)0.0259 (7)0.0002 (6)
O20.1022 (11)0.0386 (7)0.0894 (10)0.0035 (7)0.0259 (8)0.0066 (6)
O30.0782 (10)0.0913 (11)0.0937 (11)0.0151 (8)0.0195 (9)0.0164 (8)
O40.1150 (13)0.0545 (9)0.1047 (12)0.0163 (9)0.0220 (10)0.0058 (8)
C10.162 (2)0.0418 (11)0.110 (2)0.0019 (14)0.0186 (17)0.0004 (12)
C20.1028 (17)0.0469 (11)0.0809 (14)0.0004 (11)0.0013 (12)0.0004 (10)
C30.0838 (14)0.0428 (10)0.0687 (12)0.0059 (9)0.0057 (10)0.0026 (9)
C40.0724 (12)0.0427 (10)0.0606 (11)0.0040 (9)0.0060 (9)0.0011 (8)
C50.0527 (10)0.0394 (9)0.0564 (11)0.0010 (8)0.0037 (8)0.0010 (7)
C60.0528 (10)0.0445 (9)0.0543 (10)0.0006 (8)0.0001 (9)0.0012 (8)
C70.0572 (11)0.0406 (9)0.0632 (11)0.0014 (8)0.0062 (9)0.0002 (8)
C80.0548 (11)0.0519 (11)0.0596 (11)0.0098 (9)0.0014 (9)0.0042 (9)
C90.0545 (11)0.0661 (12)0.0605 (12)0.0025 (9)0.0051 (9)0.0002 (9)
C100.0622 (11)0.0474 (10)0.0649 (12)0.0042 (9)0.0039 (9)0.0056 (9)
Geometric parameters (Å, º) top
N1—C41.278 (2)C2—C31.317 (3)
N1—N21.3821 (17)C2—H220.9300
N2—C51.349 (2)C3—C41.431 (2)
N2—H20.8600C3—H30.9300
N3—O21.2245 (17)C4—H40.9300
N3—O11.2396 (17)C5—C101.422 (3)
N3—C61.446 (2)C5—C61.427 (2)
N4—O41.2221 (19)C6—C71.390 (2)
N4—O31.234 (2)C7—C81.367 (3)
N4—C81.465 (2)C7—H70.9300
C1—C21.504 (3)C8—C91.399 (3)
C1—H1A0.9600C9—C101.362 (2)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—H100.9300
C4—N1—N2116.23 (15)N1—C4—C3121.30 (18)
C5—N2—N1119.02 (14)N1—C4—H4119.4
C5—N2—H2120.5C3—C4—H4119.4
N1—N2—H2120.5N2—C5—C10120.21 (15)
O2—N3—O1121.65 (15)N2—C5—C6123.70 (16)
O2—N3—C6119.54 (15)C10—C5—C6116.08 (16)
O1—N3—C6118.80 (14)C7—C6—C5121.43 (16)
O4—N4—O3123.62 (17)C7—C6—N3116.26 (15)
O4—N4—C8119.16 (19)C5—C6—N3122.30 (15)
O3—N4—C8117.21 (17)C8—C7—C6119.78 (16)
C2—C1—H1A109.5C8—C7—H7120.1
C2—C1—H1B109.5C6—C7—H7120.1
H1A—C1—H1B109.5C7—C8—C9120.80 (17)
C2—C1—H1C109.5C7—C8—N4118.64 (17)
H1A—C1—H1C109.5C9—C8—N4120.55 (18)
H1B—C1—H1C109.5C10—C9—C8119.93 (18)
C3—C2—C1126.1 (2)C10—C9—H9120.0
C3—C2—H22117.0C8—C9—H9120.0
C1—C2—H22117.0C9—C10—C5121.97 (16)
C2—C3—C4123.7 (2)C9—C10—H10119.0
C2—C3—H3118.1C5—C10—H10119.0
C4—C3—H3118.1
C5—N2—N1—C4172.68 (16)N1—C4—C3—C2179.7 (2)
N2—N1—C4—C3179.67 (15)C4—C3—C2—C1178.41 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.6314 (18)127
N2—H2···O1i0.862.523.331 (2)159
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10N4O4
Mr250.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.6699 (8), 13.188 (2), 18.880 (3)
β (°) 92.565 (3)
V3)1161.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.972, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9152, 2458, 1326
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 0.95
No. of reflections2458
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.11

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.022.6314 (18)127.4
N2—H2···O1i0.862.523.331 (2)158.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors express their deep appreciation to the Outstanding Youth Fund for Henan Natural Scientific Research (grant No. 0512001100) and the Fund for Scientific and Technical Emphasis (grant No. 072102270006)

References

First citationBolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.  CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds