organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Methyl­phen­yl)-3-[3-(4-methyl­phen­yl)-1H-pyrazol-1-yl]-2-propenal

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 14 August 2008; accepted 23 October 2008; online 31 October 2008)

In the title compound, C20H18N2O, the pyrazole ring adopts a planar conformation. The C—N bond lengths in the pyrazole ring are shorter than a standard C—N single bond (1.443 Å), but longer than a standard double bond (1.269 Å), indicating electron delocalization. The propenal group assumes an extended conformation. Inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into cyclic centrosymmetric R22(26) dimers, which are cross-linked via C—H⋯π inter­actions.

Related literature

For the properties of pyrazole derivatives, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For related literature, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O

  • Mr = 302.36

  • Triclinic, [P \overline 1]

  • a = 10.0560 (9) Å

  • b = 10.0786 (8) Å

  • c = 10.3176 (9) Å

  • α = 62.040 (4)°

  • β = 79.356 (4)°

  • γ = 63.038 (4)°

  • V = 822.73 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.985

  • 14086 measured reflections

  • 2887 independent reflections

  • 2315 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.154

  • S = 1.03

  • 2887 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O1i 0.96 2.60 3.446 (3) 148
C9—H9⋯Cg1ii 0.93 2.80 3.690 (3) 161
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y+1, z. Cg1 is the centroid of the C16–C21 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) properties. These derivatives also possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen,1996) activities.

The pyrazole ring adopts planar conformation. The sum of the angles at N1 of the pyrazole ring (360.0°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.321 (2) and 1.360 (2) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å, (Jin et al., 2004), indicating electron delocalization. The pyrazole ring A and methylphenyl ring C are near-coplanar with the inter-ring dihedral angle of 4.50 (13)°, whereas the pyrazole ring is twisted by an angle of 66.31 (12)° to the methylphenyl ring B. The propenal group assumes an extended conformation which is evidenced from the torsion angles [N1—C6—C14—C15]-169.74 (16) ° and [C5—N1—C6—C14]-160.85 (19)°. The crystal packing is stabilized by C—H···O and C—H-π interactions in addition to van der Waals forces. The molecules at (x, y, z) and (2 - x,-y,1 - z) are linked by C22—H22B···O1 hydrogen bonds into cyclic cenrosymmetric R22(26) dimers,

Related literature top

For the properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001). For related literature, see: Beddoes et al. (1986); Jin et al. (2004); Bernstein et al. (1995); Cordell (1981). Cg1 is the centroid of the C16–C21 ring.

Experimental top

The mixture of 1-(4-methylphenyl)-1-ethanone N-[(E)-1-phenylethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain (E)-3-(4-methylphenyl)-3-[3-(4-methylphenyl)-1H -pyrazol-1-yl]-2-propenal in 34% yield.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.96 Å)and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the a axis.
(E)-3-(4-Methylphenyl)-3-[3-(4-methylphenyl)-1H-pyrazol-1-yl]- 2-propenal top
Crystal data top
C20H18N2OZ = 2
Mr = 302.36F(000) = 320
Triclinic, P1Dx = 1.221 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0560 (9) ÅCell parameters from 2865 reflections
b = 10.0786 (8) Åθ = 2.2–25.0°
c = 10.3176 (9) ŵ = 0.08 mm1
α = 62.040 (4)°T = 293 K
β = 79.356 (4)°Block, colorless
γ = 63.038 (4)°0.30 × 0.22 × 0.20 mm
V = 822.73 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2887 independent reflections
Radiation source: fine-focus sealed tube2315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.980, Tmax = 0.985k = 1111
14086 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.2614P]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max = 0.037
210 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18N2Oγ = 63.038 (4)°
Mr = 302.36V = 822.73 (12) Å3
Triclinic, P1Z = 2
a = 10.0560 (9) ÅMo Kα radiation
b = 10.0786 (8) ŵ = 0.08 mm1
c = 10.3176 (9) ÅT = 293 K
α = 62.040 (4)°0.30 × 0.22 × 0.20 mm
β = 79.356 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2315 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.035
14086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2887 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67828 (17)0.53579 (18)0.72181 (16)0.0625 (4)
N10.60777 (16)0.58095 (17)0.26253 (16)0.0432 (4)
N20.68095 (16)0.41223 (17)0.31521 (16)0.0427 (4)
C30.69279 (19)0.3841 (2)0.19979 (19)0.0416 (4)
C40.6304 (2)0.5334 (2)0.0717 (2)0.0519 (5)
H40.62670.54570.02290.062*
C50.5774 (2)0.6543 (2)0.1158 (2)0.0515 (5)
H50.52880.76750.05650.062*
C60.57725 (18)0.6542 (2)0.35731 (19)0.0400 (4)
C70.45725 (19)0.8246 (2)0.30619 (18)0.0396 (4)
C80.3162 (2)0.8596 (2)0.2667 (2)0.0450 (4)
H80.29860.77710.26570.054*
C90.2021 (2)1.0156 (2)0.2292 (2)0.0477 (5)
H90.10771.03640.20510.057*
C100.2255 (2)1.1425 (2)0.2264 (2)0.0472 (5)
C110.3665 (2)1.1077 (2)0.2624 (2)0.0490 (5)
H110.38471.19160.25970.059*
C120.4818 (2)0.9513 (2)0.3023 (2)0.0451 (4)
H120.57590.93080.32670.054*
C130.1000 (3)1.3122 (3)0.1849 (3)0.0705 (6)
H13A0.13191.37990.20110.106*
H13B0.01581.30340.24390.106*
H13C0.07191.36180.08310.106*
C140.65218 (19)0.5672 (2)0.48724 (19)0.0439 (4)
H140.73380.46660.50390.053*
C150.6144 (2)0.6193 (2)0.6020 (2)0.0465 (4)
H150.53670.72280.58370.056*
C160.75914 (19)0.2135 (2)0.21612 (19)0.0431 (4)
C170.8059 (2)0.0785 (2)0.3526 (2)0.0541 (5)
H170.79650.09530.43570.065*
C180.8664 (2)0.0813 (3)0.3660 (2)0.0600 (5)
H180.89780.17020.45830.072*
C190.8812 (2)0.1120 (3)0.2463 (3)0.0563 (5)
C200.8340 (2)0.0235 (3)0.1112 (3)0.0614 (6)
H200.84300.00640.02840.074*
C210.7740 (2)0.1837 (3)0.0956 (2)0.0548 (5)
H210.74320.27220.00290.066*
C220.9457 (3)0.2851 (3)0.2607 (3)0.0817 (8)
H22A0.94480.36060.36150.123*
H22B1.04650.31480.22850.123*
H22C0.88690.29050.20130.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0725 (10)0.0569 (9)0.0525 (9)0.0170 (7)0.0167 (7)0.0231 (7)
N10.0508 (9)0.0338 (8)0.0399 (8)0.0144 (6)0.0021 (6)0.0144 (6)
N20.0462 (8)0.0361 (8)0.0409 (8)0.0128 (6)0.0014 (6)0.0167 (6)
C30.0412 (9)0.0424 (10)0.0394 (9)0.0158 (8)0.0026 (7)0.0187 (8)
C40.0643 (12)0.0491 (11)0.0379 (10)0.0213 (9)0.0008 (8)0.0182 (8)
C50.0641 (12)0.0397 (10)0.0405 (10)0.0178 (9)0.0035 (8)0.0119 (8)
C60.0423 (9)0.0363 (9)0.0435 (9)0.0187 (8)0.0016 (7)0.0173 (7)
C70.0441 (9)0.0334 (9)0.0386 (9)0.0171 (7)0.0002 (7)0.0127 (7)
C80.0505 (10)0.0400 (10)0.0487 (10)0.0225 (8)0.0043 (8)0.0172 (8)
C90.0428 (10)0.0464 (10)0.0493 (10)0.0182 (8)0.0047 (8)0.0161 (8)
C100.0526 (11)0.0360 (9)0.0432 (10)0.0146 (8)0.0030 (8)0.0121 (8)
C110.0620 (12)0.0333 (9)0.0515 (11)0.0230 (9)0.0056 (9)0.0131 (8)
C120.0458 (10)0.0401 (10)0.0494 (10)0.0220 (8)0.0037 (8)0.0140 (8)
C130.0647 (14)0.0433 (12)0.0827 (16)0.0084 (10)0.0120 (11)0.0206 (11)
C140.0445 (10)0.0376 (9)0.0472 (10)0.0147 (8)0.0026 (8)0.0179 (8)
C150.0504 (10)0.0400 (10)0.0494 (11)0.0177 (8)0.0057 (8)0.0185 (8)
C160.0397 (9)0.0449 (10)0.0449 (10)0.0164 (8)0.0043 (7)0.0224 (8)
C170.0643 (12)0.0479 (11)0.0458 (11)0.0184 (9)0.0031 (9)0.0231 (9)
C180.0643 (13)0.0425 (11)0.0598 (13)0.0175 (10)0.0041 (10)0.0179 (9)
C190.0412 (10)0.0528 (12)0.0819 (15)0.0178 (9)0.0089 (9)0.0391 (11)
C200.0588 (12)0.0667 (14)0.0698 (14)0.0182 (11)0.0022 (10)0.0463 (12)
C210.0574 (12)0.0539 (12)0.0506 (11)0.0145 (9)0.0029 (9)0.0280 (9)
C220.0724 (16)0.0617 (15)0.123 (2)0.0251 (12)0.0162 (15)0.0569 (16)
Geometric parameters (Å, º) top
O1—C151.215 (2)C12—H120.9300
N1—C51.360 (2)C13—H13A0.9600
N1—N21.369 (2)C13—H13B0.9600
N1—C61.399 (2)C13—H13C0.9600
N2—C31.321 (2)C14—C151.435 (3)
C3—C41.411 (3)C14—H140.9300
C3—C161.469 (2)C15—H150.9300
C4—C51.348 (3)C16—C211.379 (3)
C4—H40.9300C16—C171.387 (3)
C5—H50.9300C17—C181.384 (3)
C6—C141.344 (2)C17—H170.9300
C6—C71.480 (2)C18—C191.375 (3)
C7—C121.388 (2)C18—H180.9300
C7—C81.388 (2)C19—C201.380 (3)
C8—C91.377 (3)C19—C221.501 (3)
C8—H80.9300C20—C211.380 (3)
C9—C101.388 (3)C20—H200.9300
C9—H90.9300C21—H210.9300
C10—C111.376 (3)C22—H22A0.9600
C10—C131.503 (3)C22—H22B0.9600
C11—C121.382 (3)C22—H22C0.9600
C11—H110.9300
C5—N1—N2110.87 (14)C10—C13—H13B109.5
C5—N1—C6129.15 (15)H13A—C13—H13B109.5
N2—N1—C6119.97 (14)C10—C13—H13C109.5
C3—N2—N1104.85 (14)H13A—C13—H13C109.5
N2—C3—C4111.37 (16)H13B—C13—H13C109.5
N2—C3—C16120.39 (16)C6—C14—C15124.24 (16)
C4—C3—C16128.20 (16)C6—C14—H14117.9
C5—C4—C3105.21 (17)C15—C14—H14117.9
C5—C4—H4127.4O1—C15—C14123.68 (17)
C3—C4—H4127.4O1—C15—H15118.2
C4—C5—N1107.70 (16)C14—C15—H15118.2
C4—C5—H5126.2C21—C16—C17118.12 (17)
N1—C5—H5126.2C21—C16—C3120.56 (17)
C14—C6—N1119.58 (15)C17—C16—C3121.31 (16)
C14—C6—C7124.72 (15)C18—C17—C16120.45 (19)
N1—C6—C7115.65 (14)C18—C17—H17119.8
C12—C7—C8118.61 (16)C16—C17—H17119.8
C12—C7—C6120.61 (15)C19—C18—C17121.7 (2)
C8—C7—C6120.73 (15)C19—C18—H18119.1
C9—C8—C7120.48 (16)C17—C18—H18119.1
C9—C8—H8119.8C18—C19—C20117.22 (19)
C7—C8—H8119.8C18—C19—C22121.8 (2)
C8—C9—C10121.20 (17)C20—C19—C22120.9 (2)
C8—C9—H9119.4C19—C20—C21121.90 (19)
C10—C9—H9119.4C19—C20—H20119.1
C11—C10—C9117.95 (17)C21—C20—H20119.1
C11—C10—C13121.45 (18)C16—C21—C20120.6 (2)
C9—C10—C13120.60 (18)C16—C21—H21119.7
C10—C11—C12121.59 (17)C20—C21—H21119.7
C10—C11—H11119.2C19—C22—H22A109.5
C12—C11—H11119.2C19—C22—H22B109.5
C11—C12—C7120.15 (16)H22A—C22—H22B109.5
C11—C12—H12119.9C19—C22—H22C109.5
C7—C12—H12119.9H22A—C22—H22C109.5
C10—C13—H13A109.5H22B—C22—H22C109.5
C5—N1—N2—C30.79 (19)C9—C10—C11—C121.0 (3)
C6—N1—N2—C3179.57 (15)C13—C10—C11—C12179.22 (19)
N1—N2—C3—C41.1 (2)C10—C11—C12—C70.4 (3)
N1—N2—C3—C16176.65 (15)C8—C7—C12—C111.1 (3)
N2—C3—C4—C51.1 (2)C6—C7—C12—C11176.32 (16)
C16—C3—C4—C5176.50 (18)N1—C6—C14—C15169.74 (16)
C3—C4—C5—N10.5 (2)C7—C6—C14—C157.8 (3)
N2—N1—C5—C40.1 (2)C6—C14—C15—O1176.16 (18)
C6—N1—C5—C4178.78 (17)N2—C3—C16—C21178.92 (17)
C5—N1—C6—C14160.85 (19)C4—C3—C16—C213.7 (3)
N2—N1—C6—C1417.7 (2)N2—C3—C16—C172.4 (3)
C5—N1—C6—C721.4 (3)C4—C3—C16—C17175.02 (19)
N2—N1—C6—C7160.09 (14)C21—C16—C17—C180.4 (3)
C14—C6—C7—C1254.5 (2)C3—C16—C17—C18179.17 (18)
N1—C6—C7—C12127.83 (17)C16—C17—C18—C190.5 (3)
C14—C6—C7—C8122.9 (2)C17—C18—C19—C200.4 (3)
N1—C6—C7—C854.8 (2)C17—C18—C19—C22179.5 (2)
C12—C7—C8—C92.0 (3)C18—C19—C20—C210.1 (3)
C6—C7—C8—C9175.42 (16)C22—C19—C20—C21179.7 (2)
C7—C8—C9—C101.4 (3)C17—C16—C21—C200.2 (3)
C8—C9—C10—C110.1 (3)C3—C16—C21—C20178.93 (17)
C8—C9—C10—C13179.87 (19)C19—C20—C21—C160.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.603.446 (3)148
C9—H9···Cg1ii0.932.803.690 (3)161
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O
Mr302.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0560 (9), 10.0786 (8), 10.3176 (9)
α, β, γ (°)62.040 (4), 79.356 (4), 63.038 (4)
V3)822.73 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14086, 2887, 2315
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.154, 1.03
No. of reflections2887
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.603.446 (3)147.6
C9—H9···Cg1ii0.932.803.690 (3)161
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y+1, z.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds