organic compounds
N-(3,5-Dichlorophenyl)benzenesulfonamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the 12H9Cl2NO2S, the aromatic rings are aligned at 57.0 (1)°. The molecules form chains via intermolecular N—H⋯O hydrogen bonds.
of the title compound, CRelated literature
For the structural systematics of 4,4′-disubstituted aryl benzenesulfonamides, see: Gelbrich et al. (2007). For mono- and di-substituted-aryl benzenesulfonamides, see: Gowda et al. (2008a,b); Tkachev et al. (2006). For the spectroscopic analysis of the title compound, see: Shetty & Gowda (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808034351/ng2501sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034351/ng2501Isup2.hkl
The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3,5-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.
The H atom of the NH group was located in a diffrerence map and later restrained to the distance 0.86 (1) Å
The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H9Cl2NO2S | F(000) = 616 |
Mr = 302.16 | Dx = 1.548 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.299 (2) Å | θ = 5.4–19.4° |
b = 7.215 (1) Å | µ = 5.96 mm−1 |
c = 21.954 (3) Å | T = 299 K |
β = 99.49 (1)° | Prism, colourless |
V = 1296.6 (4) Å3 | 0.50 × 0.50 × 0.25 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 2153 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.050 |
Graphite monochromator | θmax = 67.0°, θmin = 4.1° |
ω/2θ scans | h = −9→1 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→8 |
Tmin = 0.129, Tmax = 0.229 | l = −26→26 |
2518 measured reflections | 3 standard reflections every 120 min |
2311 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.0987P)2 + 0.7373P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2311 reflections | Δρmax = 0.59 e Å−3 |
167 parameters | Δρmin = −0.38 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0105 (11) |
C12H9Cl2NO2S | V = 1296.6 (4) Å3 |
Mr = 302.16 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.299 (2) Å | µ = 5.96 mm−1 |
b = 7.215 (1) Å | T = 299 K |
c = 21.954 (3) Å | 0.50 × 0.50 × 0.25 mm |
β = 99.49 (1)° |
Enraf–Nonius CAD-4 diffractometer | 2153 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.050 |
Tmin = 0.129, Tmax = 0.229 | 3 standard reflections every 120 min |
2518 measured reflections | intensity decay: 1.0% |
2311 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 1 restraint |
wR(F2) = 0.156 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.59 e Å−3 |
2311 reflections | Δρmin = −0.38 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3043 (3) | 0.1779 (4) | 0.79280 (13) | 0.0445 (6) | |
C2 | 0.4358 (4) | 0.1697 (5) | 0.84058 (17) | 0.0604 (8) | |
H2 | 0.4201 | 0.1476 | 0.8809 | 0.072* | |
C3 | 0.5911 (4) | 0.1953 (6) | 0.8269 (2) | 0.0783 (12) | |
H3 | 0.6811 | 0.1914 | 0.8584 | 0.094* | |
C4 | 0.6130 (4) | 0.2267 (6) | 0.7670 (2) | 0.0773 (11) | |
H4 | 0.7180 | 0.2427 | 0.7582 | 0.093* | |
C5 | 0.4818 (5) | 0.2344 (5) | 0.7202 (2) | 0.0746 (10) | |
H5 | 0.4980 | 0.2547 | 0.6798 | 0.090* | |
C6 | 0.3257 (4) | 0.2121 (4) | 0.73293 (15) | 0.0562 (7) | |
H6 | 0.2360 | 0.2200 | 0.7015 | 0.067* | |
C7 | 0.1252 (3) | 0.3838 (4) | 0.90059 (11) | 0.0400 (6) | |
C8 | 0.2051 (4) | 0.5522 (4) | 0.90920 (13) | 0.0484 (6) | |
H8 | 0.2132 | 0.6288 | 0.8758 | 0.058* | |
C9 | 0.2725 (4) | 0.6041 (4) | 0.96827 (15) | 0.0558 (7) | |
C10 | 0.2645 (4) | 0.4935 (4) | 1.01861 (14) | 0.0590 (8) | |
H10 | 0.3122 | 0.5293 | 1.0582 | 0.071* | |
C11 | 0.1830 (4) | 0.3278 (4) | 1.00819 (13) | 0.0534 (7) | |
C12 | 0.1118 (3) | 0.2699 (4) | 0.95062 (12) | 0.0480 (6) | |
H12 | 0.0561 | 0.1577 | 0.9451 | 0.058* | |
N1 | 0.0494 (3) | 0.3297 (3) | 0.84009 (10) | 0.0441 (5) | |
H1N | 0.038 (4) | 0.418 (3) | 0.8138 (12) | 0.053* | |
O1 | −0.0021 (3) | 0.1298 (3) | 0.74998 (9) | 0.0527 (5) | |
O2 | 0.1112 (3) | −0.0066 (3) | 0.85135 (10) | 0.0574 (6) | |
Cl1 | 0.37237 (16) | 0.81541 (13) | 0.97944 (5) | 0.0927 (4) | |
Cl2 | 0.16462 (15) | 0.18752 (15) | 1.07089 (4) | 0.0834 (4) | |
S1 | 0.10584 (7) | 0.14095 (9) | 0.80800 (3) | 0.0412 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0475 (14) | 0.0400 (13) | 0.0467 (15) | 0.0019 (11) | 0.0101 (11) | 0.0007 (11) |
C2 | 0.0571 (17) | 0.0615 (19) | 0.0589 (19) | 0.0079 (14) | −0.0009 (14) | −0.0049 (15) |
C3 | 0.0517 (18) | 0.065 (2) | 0.111 (3) | 0.0057 (15) | −0.0071 (19) | −0.014 (2) |
C4 | 0.0560 (19) | 0.063 (2) | 0.117 (4) | 0.0031 (16) | 0.029 (2) | 0.001 (2) |
C5 | 0.079 (2) | 0.064 (2) | 0.091 (3) | −0.0014 (18) | 0.044 (2) | 0.0114 (19) |
C6 | 0.0619 (17) | 0.0556 (17) | 0.0535 (17) | 0.0004 (14) | 0.0161 (13) | 0.0070 (13) |
C7 | 0.0447 (13) | 0.0413 (13) | 0.0349 (12) | 0.0025 (10) | 0.0088 (10) | −0.0039 (10) |
C8 | 0.0581 (15) | 0.0404 (14) | 0.0465 (14) | 0.0000 (12) | 0.0079 (12) | 0.0033 (12) |
C9 | 0.0631 (17) | 0.0424 (15) | 0.0585 (17) | −0.0015 (13) | 0.0001 (13) | −0.0043 (13) |
C10 | 0.078 (2) | 0.0531 (17) | 0.0426 (15) | 0.0025 (15) | 0.0004 (14) | −0.0087 (13) |
C11 | 0.0701 (18) | 0.0540 (16) | 0.0379 (14) | 0.0049 (14) | 0.0141 (13) | 0.0020 (12) |
C12 | 0.0593 (16) | 0.0466 (15) | 0.0405 (14) | −0.0057 (12) | 0.0157 (12) | −0.0028 (11) |
N1 | 0.0547 (13) | 0.0423 (12) | 0.0350 (12) | 0.0020 (10) | 0.0064 (9) | −0.0004 (9) |
O1 | 0.0548 (11) | 0.0586 (12) | 0.0427 (11) | −0.0059 (9) | 0.0021 (8) | −0.0107 (9) |
O2 | 0.0838 (15) | 0.0415 (11) | 0.0499 (11) | −0.0053 (10) | 0.0199 (10) | 0.0058 (8) |
Cl1 | 0.1209 (9) | 0.0518 (5) | 0.0915 (8) | −0.0250 (5) | −0.0236 (6) | −0.0022 (4) |
Cl2 | 0.1333 (9) | 0.0798 (7) | 0.0393 (5) | −0.0122 (6) | 0.0204 (5) | 0.0085 (4) |
S1 | 0.0495 (4) | 0.0384 (4) | 0.0359 (4) | −0.0042 (2) | 0.0076 (3) | −0.0018 (2) |
C1—C6 | 1.377 (4) | C7—N1 | 1.427 (3) |
C1—C2 | 1.385 (4) | C8—C9 | 1.377 (4) |
C1—S1 | 1.754 (3) | C8—H8 | 0.9300 |
C2—C3 | 1.383 (5) | C9—C10 | 1.374 (5) |
C2—H2 | 0.9300 | C9—Cl1 | 1.734 (3) |
C3—C4 | 1.376 (6) | C10—C11 | 1.374 (5) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.370 (6) | C11—C12 | 1.369 (4) |
C4—H4 | 0.9300 | C11—Cl2 | 1.736 (3) |
C5—C6 | 1.379 (5) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | N1—S1 | 1.637 (2) |
C6—H6 | 0.9300 | N1—H1N | 0.856 (10) |
C7—C8 | 1.382 (4) | O1—S1 | 1.433 (2) |
C7—C12 | 1.391 (4) | O2—S1 | 1.424 (2) |
C6—C1—C2 | 121.4 (3) | C7—C8—H8 | 120.7 |
C6—C1—S1 | 118.8 (2) | C10—C9—C8 | 122.3 (3) |
C2—C1—S1 | 119.8 (2) | C10—C9—Cl1 | 118.9 (2) |
C3—C2—C1 | 118.5 (4) | C8—C9—Cl1 | 118.9 (2) |
C3—C2—H2 | 120.8 | C11—C10—C9 | 117.3 (3) |
C1—C2—H2 | 120.8 | C11—C10—H10 | 121.3 |
C4—C3—C2 | 120.3 (4) | C9—C10—H10 | 121.3 |
C4—C3—H3 | 119.9 | C12—C11—C10 | 123.0 (3) |
C2—C3—H3 | 119.9 | C12—C11—Cl2 | 118.2 (2) |
C5—C4—C3 | 120.6 (3) | C10—C11—Cl2 | 118.7 (2) |
C5—C4—H4 | 119.7 | C11—C12—C7 | 118.0 (3) |
C3—C4—H4 | 119.7 | C11—C12—H12 | 121.0 |
C4—C5—C6 | 120.0 (4) | C7—C12—H12 | 121.0 |
C4—C5—H5 | 120.0 | C7—N1—S1 | 120.98 (18) |
C6—C5—H5 | 120.0 | C7—N1—H1N | 114 (2) |
C1—C6—C5 | 119.2 (3) | S1—N1—H1N | 110 (2) |
C1—C6—H6 | 120.4 | O2—S1—O1 | 119.87 (14) |
C5—C6—H6 | 120.4 | O2—S1—N1 | 108.29 (12) |
C8—C7—C12 | 120.7 (2) | O1—S1—N1 | 104.34 (12) |
C8—C7—N1 | 119.7 (2) | O2—S1—C1 | 108.30 (14) |
C12—C7—N1 | 119.5 (2) | O1—S1—C1 | 107.97 (13) |
C9—C8—C7 | 118.6 (3) | N1—S1—C1 | 107.45 (13) |
C9—C8—H8 | 120.7 | ||
C6—C1—C2—C3 | −0.5 (5) | C10—C11—C12—C7 | 1.0 (5) |
S1—C1—C2—C3 | 178.6 (3) | Cl2—C11—C12—C7 | 179.2 (2) |
C1—C2—C3—C4 | −0.5 (5) | C8—C7—C12—C11 | −1.4 (4) |
C2—C3—C4—C5 | 0.5 (6) | N1—C7—C12—C11 | −178.6 (3) |
C3—C4—C5—C6 | 0.5 (6) | C8—C7—N1—S1 | 119.8 (2) |
C2—C1—C6—C5 | 1.5 (5) | C12—C7—N1—S1 | −62.9 (3) |
S1—C1—C6—C5 | −177.6 (3) | C7—N1—S1—O2 | 48.5 (2) |
C4—C5—C6—C1 | −1.5 (5) | C7—N1—S1—O1 | 177.3 (2) |
C12—C7—C8—C9 | 0.6 (4) | C7—N1—S1—C1 | −68.3 (2) |
N1—C7—C8—C9 | 177.8 (3) | C6—C1—S1—O2 | 138.8 (2) |
C7—C8—C9—C10 | 0.7 (5) | C2—C1—S1—O2 | −40.3 (3) |
C7—C8—C9—Cl1 | −179.8 (2) | C6—C1—S1—O1 | 7.6 (3) |
C8—C9—C10—C11 | −1.2 (5) | C2—C1—S1—O1 | −171.5 (2) |
Cl1—C9—C10—C11 | 179.4 (3) | C6—C1—S1—N1 | −104.5 (2) |
C9—C10—C11—C12 | 0.3 (5) | C2—C1—S1—N1 | 76.5 (3) |
C9—C10—C11—Cl2 | −178.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 (1) | 2.06 (1) | 2.915 (3) | 178 (3) |
Symmetry code: (i) −x, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H9Cl2NO2S |
Mr | 302.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 8.299 (2), 7.215 (1), 21.954 (3) |
β (°) | 99.49 (1) |
V (Å3) | 1296.6 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 5.96 |
Crystal size (mm) | 0.50 × 0.50 × 0.25 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.129, 0.229 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2518, 2311, 2153 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.156, 1.10 |
No. of reflections | 2311 |
No. of parameters | 167 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.59, −0.38 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.856 (10) | 2.059 (11) | 2.915 (3) | 178 (3) |
Symmetry code: (i) −x, y+1/2, −z+3/2. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120. CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tkachev, V. V., Schaper, K.-J., Strakhova, N. N. & Kazachenko, V. P. (2006). Acta Cryst. E62, o2514–o2515. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides (Gowda et al., 2008a,b), in the present work, the structure of N-(3,5-dichlorophenyl)- benzenesulfonamide (N35DCPBSA) has been determined. The conformations of the N—H and S═O bonds in N35DCPBSA are trans to each other (Fig.1), similar to that observed in N-(3-chlorophenyl)- benzenesulfonamide (N3CPBSA) (Gowda et al., 2008b). The two benzene rings in N35DCPBSA form a dihedral angle of 57.0 (1)°, compared with the value of 65.4 (1)° in N3CPBSA (Gowda et al., 2008b). The other bond parameters in N35DCPBSA are also similar to those observed in N3CPBSA and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b; Tkachev et al., 2006). The packing diagram of N35DCPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.