organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 12 October 2008; accepted 21 October 2008; online 25 October 2008)

In the crystal structure of the title compound, C12H9Cl2NO2S, the aromatic rings are aligned at 57.0 (1)°. The mol­ecules form chains via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the structural systematics of 4,4′-disubstituted aryl benzene­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]). For mono- and di-substituted-aryl benzene­sulfonamides, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.]); Tkachev et al. (2006[Tkachev, V. V., Schaper, K.-J., Strakhova, N. N. & Kazachenko, V. P. (2006). Acta Cryst. E62, o2514-o2515.]). For the spectroscopic analysis of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Cl2NO2S

  • Mr = 302.16

  • Monoclinic, P 21 /c

  • a = 8.299 (2) Å

  • b = 7.215 (1) Å

  • c = 21.954 (3) Å

  • β = 99.49 (1)°

  • V = 1296.6 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.96 mm−1

  • T = 299 (2) K

  • 0.50 × 0.50 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.129, Tmax = 0.229

  • 2518 measured reflections

  • 2311 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 1.10

  • 2311 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.856 (10) 2.059 (11) 2.915 (3) 178 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides (Gowda et al., 2008a,b), in the present work, the structure of N-(3,5-dichlorophenyl)- benzenesulfonamide (N35DCPBSA) has been determined. The conformations of the N—H and SO bonds in N35DCPBSA are trans to each other (Fig.1), similar to that observed in N-(3-chlorophenyl)- benzenesulfonamide (N3CPBSA) (Gowda et al., 2008b). The two benzene rings in N35DCPBSA form a dihedral angle of 57.0 (1)°, compared with the value of 65.4 (1)° in N3CPBSA (Gowda et al., 2008b). The other bond parameters in N35DCPBSA are also similar to those observed in N3CPBSA and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b; Tkachev et al., 2006). The packing diagram of N35DCPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For the structural systematics of 4,4'-disubstituted aryl benzenesulfonamides, see: Gelbrich et al. (2007). For mono- and di-substituted-aryl benzenesulfonamides, see: Gowda et al. (2008a,b); Tkachev et al. (2006). For the spectroscopic analysis of the title compound, see: Shetty & Gowda (2005).

Experimental top

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3,5-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.

Refinement top

The H atom of the NH group was located in a diffrerence map and later restrained to the distance 0.86 (1) Å

The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,5-Dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H9Cl2NO2SF(000) = 616
Mr = 302.16Dx = 1.548 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.299 (2) Åθ = 5.4–19.4°
b = 7.215 (1) ŵ = 5.96 mm1
c = 21.954 (3) ÅT = 299 K
β = 99.49 (1)°Prism, colourless
V = 1296.6 (4) Å30.50 × 0.50 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2153 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 67.0°, θmin = 4.1°
ω/2θ scansh = 91
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.129, Tmax = 0.229l = 2626
2518 measured reflections3 standard reflections every 120 min
2311 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0987P)2 + 0.7373P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2311 reflectionsΔρmax = 0.59 e Å3
167 parametersΔρmin = 0.38 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0105 (11)
Crystal data top
C12H9Cl2NO2SV = 1296.6 (4) Å3
Mr = 302.16Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.299 (2) ŵ = 5.96 mm1
b = 7.215 (1) ÅT = 299 K
c = 21.954 (3) Å0.50 × 0.50 × 0.25 mm
β = 99.49 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2153 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.129, Tmax = 0.2293 standard reflections every 120 min
2518 measured reflections intensity decay: 1.0%
2311 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.59 e Å3
2311 reflectionsΔρmin = 0.38 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3043 (3)0.1779 (4)0.79280 (13)0.0445 (6)
C20.4358 (4)0.1697 (5)0.84058 (17)0.0604 (8)
H20.42010.14760.88090.072*
C30.5911 (4)0.1953 (6)0.8269 (2)0.0783 (12)
H30.68110.19140.85840.094*
C40.6130 (4)0.2267 (6)0.7670 (2)0.0773 (11)
H40.71800.24270.75820.093*
C50.4818 (5)0.2344 (5)0.7202 (2)0.0746 (10)
H50.49800.25470.67980.090*
C60.3257 (4)0.2121 (4)0.73293 (15)0.0562 (7)
H60.23600.22000.70150.067*
C70.1252 (3)0.3838 (4)0.90059 (11)0.0400 (6)
C80.2051 (4)0.5522 (4)0.90920 (13)0.0484 (6)
H80.21320.62880.87580.058*
C90.2725 (4)0.6041 (4)0.96827 (15)0.0558 (7)
C100.2645 (4)0.4935 (4)1.01861 (14)0.0590 (8)
H100.31220.52931.05820.071*
C110.1830 (4)0.3278 (4)1.00819 (13)0.0534 (7)
C120.1118 (3)0.2699 (4)0.95062 (12)0.0480 (6)
H120.05610.15770.94510.058*
N10.0494 (3)0.3297 (3)0.84009 (10)0.0441 (5)
H1N0.038 (4)0.418 (3)0.8138 (12)0.053*
O10.0021 (3)0.1298 (3)0.74998 (9)0.0527 (5)
O20.1112 (3)0.0066 (3)0.85135 (10)0.0574 (6)
Cl10.37237 (16)0.81541 (13)0.97944 (5)0.0927 (4)
Cl20.16462 (15)0.18752 (15)1.07089 (4)0.0834 (4)
S10.10584 (7)0.14095 (9)0.80800 (3)0.0412 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (14)0.0400 (13)0.0467 (15)0.0019 (11)0.0101 (11)0.0007 (11)
C20.0571 (17)0.0615 (19)0.0589 (19)0.0079 (14)0.0009 (14)0.0049 (15)
C30.0517 (18)0.065 (2)0.111 (3)0.0057 (15)0.0071 (19)0.014 (2)
C40.0560 (19)0.063 (2)0.117 (4)0.0031 (16)0.029 (2)0.001 (2)
C50.079 (2)0.064 (2)0.091 (3)0.0014 (18)0.044 (2)0.0114 (19)
C60.0619 (17)0.0556 (17)0.0535 (17)0.0004 (14)0.0161 (13)0.0070 (13)
C70.0447 (13)0.0413 (13)0.0349 (12)0.0025 (10)0.0088 (10)0.0039 (10)
C80.0581 (15)0.0404 (14)0.0465 (14)0.0000 (12)0.0079 (12)0.0033 (12)
C90.0631 (17)0.0424 (15)0.0585 (17)0.0015 (13)0.0001 (13)0.0043 (13)
C100.078 (2)0.0531 (17)0.0426 (15)0.0025 (15)0.0004 (14)0.0087 (13)
C110.0701 (18)0.0540 (16)0.0379 (14)0.0049 (14)0.0141 (13)0.0020 (12)
C120.0593 (16)0.0466 (15)0.0405 (14)0.0057 (12)0.0157 (12)0.0028 (11)
N10.0547 (13)0.0423 (12)0.0350 (12)0.0020 (10)0.0064 (9)0.0004 (9)
O10.0548 (11)0.0586 (12)0.0427 (11)0.0059 (9)0.0021 (8)0.0107 (9)
O20.0838 (15)0.0415 (11)0.0499 (11)0.0053 (10)0.0199 (10)0.0058 (8)
Cl10.1209 (9)0.0518 (5)0.0915 (8)0.0250 (5)0.0236 (6)0.0022 (4)
Cl20.1333 (9)0.0798 (7)0.0393 (5)0.0122 (6)0.0204 (5)0.0085 (4)
S10.0495 (4)0.0384 (4)0.0359 (4)0.0042 (2)0.0076 (3)0.0018 (2)
Geometric parameters (Å, º) top
C1—C61.377 (4)C7—N11.427 (3)
C1—C21.385 (4)C8—C91.377 (4)
C1—S11.754 (3)C8—H80.9300
C2—C31.383 (5)C9—C101.374 (5)
C2—H20.9300C9—Cl11.734 (3)
C3—C41.376 (6)C10—C111.374 (5)
C3—H30.9300C10—H100.9300
C4—C51.370 (6)C11—C121.369 (4)
C4—H40.9300C11—Cl21.736 (3)
C5—C61.379 (5)C12—H120.9300
C5—H50.9300N1—S11.637 (2)
C6—H60.9300N1—H1N0.856 (10)
C7—C81.382 (4)O1—S11.433 (2)
C7—C121.391 (4)O2—S11.424 (2)
C6—C1—C2121.4 (3)C7—C8—H8120.7
C6—C1—S1118.8 (2)C10—C9—C8122.3 (3)
C2—C1—S1119.8 (2)C10—C9—Cl1118.9 (2)
C3—C2—C1118.5 (4)C8—C9—Cl1118.9 (2)
C3—C2—H2120.8C11—C10—C9117.3 (3)
C1—C2—H2120.8C11—C10—H10121.3
C4—C3—C2120.3 (4)C9—C10—H10121.3
C4—C3—H3119.9C12—C11—C10123.0 (3)
C2—C3—H3119.9C12—C11—Cl2118.2 (2)
C5—C4—C3120.6 (3)C10—C11—Cl2118.7 (2)
C5—C4—H4119.7C11—C12—C7118.0 (3)
C3—C4—H4119.7C11—C12—H12121.0
C4—C5—C6120.0 (4)C7—C12—H12121.0
C4—C5—H5120.0C7—N1—S1120.98 (18)
C6—C5—H5120.0C7—N1—H1N114 (2)
C1—C6—C5119.2 (3)S1—N1—H1N110 (2)
C1—C6—H6120.4O2—S1—O1119.87 (14)
C5—C6—H6120.4O2—S1—N1108.29 (12)
C8—C7—C12120.7 (2)O1—S1—N1104.34 (12)
C8—C7—N1119.7 (2)O2—S1—C1108.30 (14)
C12—C7—N1119.5 (2)O1—S1—C1107.97 (13)
C9—C8—C7118.6 (3)N1—S1—C1107.45 (13)
C9—C8—H8120.7
C6—C1—C2—C30.5 (5)C10—C11—C12—C71.0 (5)
S1—C1—C2—C3178.6 (3)Cl2—C11—C12—C7179.2 (2)
C1—C2—C3—C40.5 (5)C8—C7—C12—C111.4 (4)
C2—C3—C4—C50.5 (6)N1—C7—C12—C11178.6 (3)
C3—C4—C5—C60.5 (6)C8—C7—N1—S1119.8 (2)
C2—C1—C6—C51.5 (5)C12—C7—N1—S162.9 (3)
S1—C1—C6—C5177.6 (3)C7—N1—S1—O248.5 (2)
C4—C5—C6—C11.5 (5)C7—N1—S1—O1177.3 (2)
C12—C7—C8—C90.6 (4)C7—N1—S1—C168.3 (2)
N1—C7—C8—C9177.8 (3)C6—C1—S1—O2138.8 (2)
C7—C8—C9—C100.7 (5)C2—C1—S1—O240.3 (3)
C7—C8—C9—Cl1179.8 (2)C6—C1—S1—O17.6 (3)
C8—C9—C10—C111.2 (5)C2—C1—S1—O1171.5 (2)
Cl1—C9—C10—C11179.4 (3)C6—C1—S1—N1104.5 (2)
C9—C10—C11—C120.3 (5)C2—C1—S1—N176.5 (3)
C9—C10—C11—Cl2178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.06 (1)2.915 (3)178 (3)
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H9Cl2NO2S
Mr302.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.299 (2), 7.215 (1), 21.954 (3)
β (°) 99.49 (1)
V3)1296.6 (4)
Z4
Radiation typeCu Kα
µ (mm1)5.96
Crystal size (mm)0.50 × 0.50 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.129, 0.229
No. of measured, independent and
observed [I > 2σ(I)] reflections
2518, 2311, 2153
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 1.10
No. of reflections2311
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.38

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.856 (10)2.059 (11)2.915 (3)178 (3)
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTkachev, V. V., Schaper, K.-J., Strakhova, N. N. & Kazachenko, V. P. (2006). Acta Cryst. E62, o2514–o2515.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds