organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Nitro­benzo­yl)-3-(4-nitro­phen­yl)­thio­urea acetone hemisolvate

aChemical Engineering Institute, Northwest University for Nationalities, Lanzhou 730124, People's Republic of China
*Correspondence e-mail: xianliangchina@yahoo.com.cn

(Received 2 October 2008; accepted 15 October 2008; online 18 October 2008)

In the title compound, C14H10N4O5S·0.5C3H6O, the nitro­benzoyl and nitro­phenyl groups have trans and cis configurations, respectively, with respect to the thio­urea S atom. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O and C—H⋯S hydrogen bonds. The acetone solvent mol­ecule possesses a crystallographically imposed twofold axis. In the crystal packing, thio­urea mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bond inter­actions to form chains running parallel to the c axis. The chains are further bridged via N—H⋯O and C—H⋯O hydrogen bonds involving the acetone mol­ecules.

Related literature

For general background on the chemistry of thio­urea derivatives, see: Choi et al. (2008[Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522-4525.]); Jones et al. (2008[Jones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666-4669.]); Kushwaha et al. (2008[Kushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett. 62, 3931-3933.]); Su et al. (2006[Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Slicon, 181, 745-750.]). For related structures, see: Su (2005[Su, B.-Q. (2005). Acta Cryst. E61, o3492-o3494.], 2007[Su, B.-Q. (2007). J. Chem. Crystallogr. 37, 87-90.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O5S·0.5C3H6O

  • Mr = 375.36

  • Monoclinic, C 2/c

  • a = 30.828 (14) Å

  • b = 7.534 (3) Å

  • c = 15.224 (7) Å

  • β = 107.262 (12)°

  • V = 3377 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 (2) K

  • 0.34 × 0.31 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.941

  • 9659 measured reflections

  • 3926 independent reflections

  • 2804 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 1.05

  • 3926 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯S1 0.93 2.79 3.235 (2) 111
N2—H2A⋯O3 0.90 (3) 1.88 (3) 2.659 (3) 144 (2)
C2—H2⋯O4i 0.93 2.48 3.394 (3) 167
C12—H12⋯O5ii 0.93 2.54 3.318 (3) 141
N3—H3A⋯O6 0.86 (2) 2.442 (19) 3.300 (2) 175 (2)
C13—H13⋯O6 0.93 2.59 3.207 (3) 124
C14—H14B⋯O5iii 0.96 2.56 3.446 (3) 154
C14—H14C⋯O4iv 0.96 2.52 3.476 (3) 175
Symmetry codes: (i) x, y, z+1; (ii) -x, -y+2, -z+1; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its derivatives are broadly applied in anion recognition, nonlinear optics and catalysis, and display also high bioactivity and good coordination ability (Choi et al., 2008; Kushwaha et al., 2008; Jones et al. 2008; Su et al., 2006). As part of our research on thiourea coordination chemistry, we are interested in the study of the influence of noncovalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzoylthiourea with transition metal ions. In the present paper, the crystal structure of the title compound is reported.

In the molecule of the title compound (Fig. 1), the nitrobenzoyl and nitrophenyl groups have trans and cis configurations, respectively, with respect of the thiourea S atom. The dihedral angle formed by the two aromatic rings is 7.68 (6)°. The molecular conformation is stabilized by intramolecular N—H···O and C—H···S hydrogen bonds (Table 1) forming six-membered rings of graph set S(6) (Bernstein et al., 1995). This conformation is similar to that reported for N-(4-chlorophenyl)-N'-(4-nitrobenzoyl)urea (Su, 2005) and for N-(p-nitrobenzoyl)-N'-(p-chlorophenyl)thiourea (Su, 2007). The acetone solvent molecule has a crystallographically imposed twofold symmetry. In the crystal packing (Fig. 2), thiourea molecules are linked into chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds (Table 1). These chains are further bridged via N—H···O and C—H···O hydrogen bonds (Table 1) involving the acetone molecules.

Related literature top

For general background on the chemistry of thiourea derivatives, see: Choi et al. (2008); Jones et al. (2008); Kushwaha et al. (2008); Su et al. (2006). For related structures, see: Su (2005, 2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

All reagents and organic solvents were of analytical reagent grade and commercially available. p-Nitrobenzoyl chloride (1.86 g) was treated with ammonium thiocyanate (1.20 g) in CH2Cl2 under solid-liquid phase transfer catalysis conditions, using 3% polyethylene glycol-400 as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with p-nitroaniline (1.38 g) to give the title compound. The solid was separated from the liquid phase by filtration, washed with CH2Cl2 and then dried in air. Yellow single crystals suitable for X-ray analysis were obtained after one week by slow evaporation of an acetone solution. The infrared spectrum was recorded in the range of 4000–400 cm-1 on a Nicolet NEXUS 670 F T—IR spectrometer, using KBr pellets. 1H NMR spectrum was obtained on an INOVA-400 MHz superconduction spectrometer, DMSO-d6 was used as solvent and TMS as internal standard, and the chemical shifts are expressed as delta. Elemental analyses were carried out on a PE-2400 elemental analysis instrument. Melting point determination was performed in YRT-3 melting point instrument (Tianjin) and was uncorrected. Melting Point: 201–204°C. Elemental analysis (%) found (calcd.): C, 50.25(49.6); H, 3.55(3.47); N, 11.30(14.93); S, 8.50(8.53). IR (KBr, cm-1): 3385 (N—H), 3064, 1680 (C=O), 1571(C=C), 1318, 1259(C=S), 1137, 1106. 1H NMR(delta, p.p.m.): 2.50 (s, 6H, 2CH3); 8.07–8.38 (m, 8H, 2C6H4); 12.15 (s, 1H, NH); 12.61 (s, 1H, NH).

Refinement top

All H atoms bound to C atoms were placed in calculated positions and refined using the riding model approximation, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The H atoms bound to N atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
1-(4-Nitrobenzoyl)-3-(4-nitrophenyl)thiourea acetone hemisolvate top
Crystal data top
C14H10N4O5S·0.5C3H6OF(000) = 1552
Mr = 375.36Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3344 reflections
a = 30.828 (14) Åθ = 2.7–28.3°
b = 7.534 (3) ŵ = 0.23 mm1
c = 15.224 (7) ÅT = 296 K
β = 107.262 (12)°Block, yellow
V = 3377 (3) Å30.34 × 0.31 × 0.27 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3926 independent reflections
Radiation source: fine-focus sealed tube2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3932
Tmin = 0.924, Tmax = 0.941k = 99
9659 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 1.6044P]
where P = (Fo2 + 2Fc2)/3
3926 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H10N4O5S·0.5C3H6OV = 3377 (3) Å3
Mr = 375.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.828 (14) ŵ = 0.23 mm1
b = 7.534 (3) ÅT = 296 K
c = 15.224 (7) Å0.34 × 0.31 × 0.27 mm
β = 107.262 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3926 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2804 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.941Rint = 0.023
9659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3926 reflectionsΔρmin = 0.28 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06837 (2)0.61209 (9)0.99931 (4)0.0607 (2)
N20.15507 (6)0.7121 (2)1.02255 (11)0.0464 (4)
C80.11880 (6)0.8073 (2)0.72951 (12)0.0378 (4)
O30.17768 (5)0.7877 (2)0.87122 (9)0.0576 (4)
C70.13716 (6)0.7739 (3)0.83134 (12)0.0418 (4)
C110.09121 (6)0.8598 (2)0.54287 (12)0.0393 (4)
C30.21046 (6)0.6165 (2)1.30383 (12)0.0406 (4)
N40.07617 (6)0.8875 (2)0.44189 (11)0.0494 (4)
N10.22987 (6)0.5784 (2)1.40277 (11)0.0501 (4)
N30.10573 (6)0.7234 (2)0.87465 (11)0.0443 (4)
C60.17262 (6)0.6799 (2)1.11874 (12)0.0402 (4)
O40.10416 (6)0.8676 (3)0.39985 (10)0.0737 (5)
C120.06084 (7)0.8910 (3)0.59207 (13)0.0473 (5)
H120.03150.92920.56240.057*
O10.20702 (6)0.6125 (2)1.45421 (11)0.0714 (5)
C100.13499 (7)0.8041 (3)0.58343 (13)0.0450 (5)
H100.15480.78440.54870.054*
C50.21595 (7)0.6070 (3)1.15057 (13)0.0440 (5)
H50.23220.58101.10950.053*
C40.23498 (6)0.5731 (3)1.24383 (13)0.0433 (4)
H40.26370.52221.26560.052*
C130.07482 (6)0.8645 (3)0.68621 (13)0.0455 (5)
H130.05480.88500.72040.055*
C90.14873 (6)0.7782 (3)0.67771 (13)0.0434 (4)
H90.17830.74090.70690.052*
C20.16818 (7)0.6953 (3)1.27367 (13)0.0467 (5)
H20.15270.72701.31530.056*
C200.11244 (7)0.6852 (3)0.96836 (13)0.0420 (4)
C10.14910 (7)0.7265 (3)1.18041 (13)0.0479 (5)
H10.12060.77871.15910.057*
O20.26788 (6)0.5125 (3)1.42899 (10)0.0722 (5)
O50.03714 (6)0.9316 (3)0.40451 (10)0.0722 (5)
O60.00000.6468 (3)0.75000.0792 (8)
C150.00000.4863 (4)0.75000.0500 (7)
C140.03535 (9)0.3861 (3)0.7781 (2)0.0754 (7)
H14A0.05410.46780.79900.113*
H14B0.02100.30570.82700.113*
H14C0.05380.32030.72650.113*
H3A0.0780 (7)0.711 (3)0.8413 (14)0.049 (6)*
H2A0.1744 (9)0.733 (4)0.9897 (18)0.081 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0563 (4)0.0823 (4)0.0462 (3)0.0144 (3)0.0194 (3)0.0088 (3)
N20.0452 (10)0.0642 (11)0.0310 (8)0.0001 (8)0.0131 (7)0.0046 (7)
C80.0392 (10)0.0399 (10)0.0344 (9)0.0020 (7)0.0112 (7)0.0026 (7)
O30.0408 (8)0.0929 (12)0.0379 (7)0.0029 (7)0.0096 (6)0.0058 (7)
C70.0420 (10)0.0464 (11)0.0371 (10)0.0002 (8)0.0122 (8)0.0013 (8)
C110.0419 (10)0.0420 (10)0.0339 (9)0.0017 (8)0.0111 (8)0.0008 (7)
C30.0459 (11)0.0421 (10)0.0321 (9)0.0038 (8)0.0091 (8)0.0008 (7)
N40.0564 (11)0.0560 (11)0.0353 (9)0.0027 (8)0.0126 (8)0.0015 (7)
N10.0566 (11)0.0545 (10)0.0368 (9)0.0028 (8)0.0099 (8)0.0020 (7)
N30.0400 (9)0.0574 (10)0.0340 (8)0.0039 (8)0.0089 (7)0.0049 (7)
C60.0458 (10)0.0433 (10)0.0317 (9)0.0013 (8)0.0119 (8)0.0012 (8)
O40.0754 (12)0.1094 (15)0.0437 (9)0.0136 (10)0.0289 (8)0.0056 (9)
C120.0370 (10)0.0629 (13)0.0415 (10)0.0084 (9)0.0108 (8)0.0091 (9)
O10.0845 (12)0.0950 (13)0.0394 (8)0.0095 (10)0.0257 (8)0.0075 (8)
C100.0427 (11)0.0536 (12)0.0426 (10)0.0032 (9)0.0189 (8)0.0015 (9)
C50.0419 (10)0.0553 (12)0.0379 (10)0.0018 (8)0.0164 (8)0.0049 (8)
C40.0382 (10)0.0493 (11)0.0411 (10)0.0002 (8)0.0096 (8)0.0024 (8)
C130.0395 (10)0.0596 (12)0.0415 (10)0.0052 (9)0.0184 (8)0.0060 (9)
C90.0351 (10)0.0529 (12)0.0415 (10)0.0047 (8)0.0101 (8)0.0021 (8)
C20.0505 (12)0.0576 (12)0.0359 (10)0.0067 (9)0.0187 (8)0.0008 (9)
C200.0487 (11)0.0420 (10)0.0363 (10)0.0010 (8)0.0138 (8)0.0027 (8)
C10.0477 (11)0.0570 (12)0.0390 (10)0.0132 (9)0.0130 (8)0.0037 (9)
O20.0641 (10)0.0925 (13)0.0481 (9)0.0169 (9)0.0016 (7)0.0059 (9)
O50.0597 (10)0.1078 (14)0.0417 (8)0.0188 (9)0.0038 (7)0.0013 (9)
O60.0867 (19)0.0590 (15)0.111 (2)0.0000.0586 (17)0.000
C150.0476 (16)0.060 (2)0.0417 (15)0.0000.0121 (12)0.000
C140.0655 (16)0.0731 (17)0.096 (2)0.0050 (13)0.0367 (15)0.0070 (14)
Geometric parameters (Å, º) top
S1—C201.659 (2)N3—H3A0.86 (2)
N2—C201.344 (3)C6—C11.391 (3)
N2—C61.423 (2)C6—C51.392 (3)
N2—H2A0.90 (3)C12—C131.383 (3)
C8—C131.389 (3)C12—H120.9300
C8—C91.397 (3)C10—C91.385 (3)
C8—C71.505 (3)C10—H100.9300
O3—C71.221 (2)C5—C41.389 (3)
C7—N31.378 (2)C5—H50.9300
C11—C101.373 (3)C4—H40.9300
C11—C121.382 (3)C13—H130.9300
C11—N41.483 (2)C9—H90.9300
C3—C21.381 (3)C2—C11.386 (3)
C3—C41.387 (3)C2—H20.9300
C3—N11.475 (2)C1—H10.9300
N4—O51.215 (2)O6—C151.209 (4)
N4—O41.227 (2)C15—C141.489 (3)
N1—O21.225 (2)C14—H14A0.9600
N1—O11.226 (2)C14—H14B0.9600
N3—C201.409 (2)C14—H14C0.9600
C20—N2—C6127.59 (17)C11—C10—H10121.1
C20—N2—H2A112.0 (17)C9—C10—H10121.1
C6—N2—H2A119.4 (17)C4—C5—C6119.93 (17)
C13—C8—C9119.73 (17)C4—C5—H5120.0
C13—C8—C7123.80 (16)C6—C5—H5120.0
C9—C8—C7116.46 (16)C3—C4—C5118.84 (18)
O3—C7—N3123.16 (17)C3—C4—H4120.6
O3—C7—C8120.96 (16)C5—C4—H4120.6
N3—C7—C8115.86 (16)C12—C13—C8119.79 (17)
C10—C11—C12122.83 (17)C12—C13—H13120.1
C10—C11—N4118.20 (16)C8—C13—H13120.1
C12—C11—N4118.96 (17)C10—C9—C8120.85 (17)
C2—C3—C4121.85 (17)C10—C9—H9119.6
C2—C3—N1118.69 (17)C8—C9—H9119.6
C4—C3—N1119.46 (18)C3—C2—C1119.02 (18)
O5—N4—O4122.79 (18)C3—C2—H2120.5
O5—N4—C11119.06 (17)C1—C2—H2120.5
O4—N4—C11118.14 (17)N2—C20—N3114.45 (16)
O2—N1—O1123.50 (18)N2—C20—S1127.59 (15)
O2—N1—C3118.07 (17)N3—C20—S1117.96 (15)
O1—N1—C3118.43 (18)C2—C1—C6120.06 (18)
C7—N3—C20128.92 (17)C2—C1—H1120.0
C7—N3—H3A117.7 (14)C6—C1—H1120.0
C20—N3—H3A113.4 (14)O6—C15—C14120.45 (15)
C1—C6—C5120.22 (17)C15—C14—H14A109.5
C1—C6—N2122.44 (18)C15—C14—H14B109.5
C5—C6—N2117.26 (16)H14A—C14—H14B109.5
C11—C12—C13118.96 (17)C15—C14—H14C109.5
C11—C12—H12120.5H14A—C14—H14C109.5
C13—C12—H12120.5H14B—C14—H14C109.5
C11—C10—C9117.83 (17)
C13—C8—C7—O3152.9 (2)C1—C6—C5—C42.9 (3)
C9—C8—C7—O326.9 (3)N2—C6—C5—C4179.80 (17)
C13—C8—C7—N328.7 (3)C2—C3—C4—C51.2 (3)
C9—C8—C7—N3151.55 (18)N1—C3—C4—C5178.93 (17)
C10—C11—N4—O5177.8 (2)C6—C5—C4—C31.3 (3)
C12—C11—N4—O52.3 (3)C11—C12—C13—C80.0 (3)
C10—C11—N4—O43.4 (3)C9—C8—C13—C120.5 (3)
C12—C11—N4—O4176.51 (19)C7—C8—C13—C12179.73 (18)
C2—C3—N1—O2178.25 (19)C11—C10—C9—C80.3 (3)
C4—C3—N1—O21.6 (3)C13—C8—C9—C100.6 (3)
C2—C3—N1—O12.5 (3)C7—C8—C9—C10179.60 (18)
C4—C3—N1—O1177.63 (19)C4—C3—C2—C12.1 (3)
O3—C7—N3—C202.4 (3)N1—C3—C2—C1178.03 (18)
C8—C7—N3—C20179.26 (18)C6—N2—C20—N3177.66 (18)
C20—N2—C6—C143.5 (3)C6—N2—C20—S11.7 (3)
C20—N2—C6—C5139.8 (2)C7—N3—C20—N24.1 (3)
C10—C11—C12—C130.3 (3)C7—N3—C20—S1175.35 (17)
N4—C11—C12—C13179.78 (18)C3—C2—C1—C60.5 (3)
C12—C11—C10—C90.2 (3)C5—C6—C1—C22.0 (3)
N4—C11—C10—C9179.88 (17)N2—C6—C1—C2178.72 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···S10.932.793.235 (2)111
N2—H2A···O30.90 (3)1.88 (3)2.659 (3)144 (2)
C2—H2···O4i0.932.483.394 (3)167
C12—H12···O5ii0.932.543.318 (3)141
N3—H3A···O60.86 (2)2.442 (19)3.300 (2)175 (2)
C13—H13···O60.932.593.207 (3)124
C14—H14B···O5iii0.962.563.446 (3)154
C14—H14C···O4iv0.962.523.476 (3)175
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10N4O5S·0.5C3H6O
Mr375.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)30.828 (14), 7.534 (3), 15.224 (7)
β (°) 107.262 (12)
V3)3377 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.34 × 0.31 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
9659, 3926, 2804
Rint0.023
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.05
No. of reflections3926
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···S10.932.793.235 (2)111
N2—H2A···O30.90 (3)1.88 (3)2.659 (3)144 (2)
C2—H2···O4i0.932.483.394 (3)167
C12—H12···O5ii0.932.543.318 (3)141
N3—H3A···O60.86 (2)2.442 (19)3.300 (2)175 (2)
C13—H13···O60.932.593.207 (3)124
C14—H14B···O5iii0.962.563.446 (3)154
C14—H14C···O4iv0.962.523.476 (3)175
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z+1.
 

Acknowledgements

Financial support of this work by the Foundation of Northwest University for Nationalities is acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525.  Web of Science CrossRef CAS Google Scholar
First citationJones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669.  Web of Science CrossRef CAS Google Scholar
First citationKushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett. 62, 3931–3933.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Q. (2005). Acta Cryst. E61, o3492–o3494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, B.-Q. (2007). J. Chem. Crystallogr. 37, 87–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Slicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds