organic compounds
1-(4-Nitrobenzoyl)-3-(4-nitrophenyl)thiourea acetone hemisolvate
aChemical Engineering Institute, Northwest University for Nationalities, Lanzhou 730124, People's Republic of China
*Correspondence e-mail: xianliangchina@yahoo.com.cn
In the title compound, C14H10N4O5S·0.5C3H6O, the nitrobenzoyl and nitrophenyl groups have trans and cis configurations, respectively, with respect to the thiourea S atom. The molecular conformation is stabilized by intramolecular N—H⋯O and C—H⋯S hydrogen bonds. The acetone solvent molecule possesses a crystallographically imposed twofold axis. In the crystal packing, thiourea molecules are linked by intermolecular C—H⋯O hydrogen-bond interactions to form chains running parallel to the c axis. The chains are further bridged via N—H⋯O and C—H⋯O hydrogen bonds involving the acetone molecules.
Related literature
For general background on the chemistry of thiourea derivatives, see: Choi et al. (2008); Jones et al. (2008); Kushwaha et al. (2008); Su et al. (2006). For related structures, see: Su (2005, 2007). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680803359X/rz2253sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803359X/rz2253Isup2.hkl
All reagents and organic solvents were of analytical reagent grade and commercially available. p-Nitrobenzoyl chloride (1.86 g) was treated with ammonium thiocyanate (1.20 g) in CH2Cl2 under solid-liquid phase transfer catalysis conditions, using 3% polyethylene glycol-400 as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with p-nitroaniline (1.38 g) to give the title compound. The solid was separated from the liquid phase by filtration, washed with CH2Cl2 and then dried in air. Yellow single crystals suitable for X-ray analysis were obtained after one week by slow evaporation of an acetone solution. The infrared spectrum was recorded in the range of 4000–400 cm-1 on a Nicolet NEXUS 670 F T—IR spectrometer, using KBr pellets. 1H NMR spectrum was obtained on an INOVA-400 MHz superconduction spectrometer, DMSO-d6 was used as solvent and TMS as internal standard, and the chemical shifts are expressed as delta. Elemental analyses were carried out on a PE-2400 elemental analysis instrument. Melting point determination was performed in YRT-3 melting point instrument (Tianjin) and was uncorrected. Melting Point: 201–204°C. Elemental analysis (%) found (calcd.): C, 50.25(49.6); H, 3.55(3.47); N, 11.30(14.93); S, 8.50(8.53). IR (KBr, cm-1): 3385 (N—H), 3064, 1680 (C=O), 1571(C=C), 1318, 1259(C=S), 1137, 1106. 1H NMR(delta, p.p.m.): 2.50 (s, 6H, 2CH3); 8.07–8.38 (m, 8H, 2C6H4); 12.15 (s, 1H, NH); 12.61 (s, 1H, NH).
All H atoms bound to C atoms were placed in calculated positions and refined using the riding model approximation, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The H atoms bound to N atoms were located in a difference Fourier map and refined freely.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines. | |
Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines. |
C14H10N4O5S·0.5C3H6O | F(000) = 1552 |
Mr = 375.36 | Dx = 1.477 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3344 reflections |
a = 30.828 (14) Å | θ = 2.7–28.3° |
b = 7.534 (3) Å | µ = 0.23 mm−1 |
c = 15.224 (7) Å | T = 296 K |
β = 107.262 (12)° | Block, yellow |
V = 3377 (3) Å3 | 0.34 × 0.31 × 0.27 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 3926 independent reflections |
Radiation source: fine-focus sealed tube | 2804 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 28.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −39→32 |
Tmin = 0.924, Tmax = 0.941 | k = −9→9 |
9659 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.063P)2 + 1.6044P] where P = (Fo2 + 2Fc2)/3 |
3926 reflections | (Δ/σ)max = 0.001 |
245 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C14H10N4O5S·0.5C3H6O | V = 3377 (3) Å3 |
Mr = 375.36 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 30.828 (14) Å | µ = 0.23 mm−1 |
b = 7.534 (3) Å | T = 296 K |
c = 15.224 (7) Å | 0.34 × 0.31 × 0.27 mm |
β = 107.262 (12)° |
Bruker SMART CCD area-detector diffractometer | 3926 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2804 reflections with I > 2σ(I) |
Tmin = 0.924, Tmax = 0.941 | Rint = 0.023 |
9659 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.27 e Å−3 |
3926 reflections | Δρmin = −0.28 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.06837 (2) | 0.61209 (9) | 0.99931 (4) | 0.0607 (2) | |
N2 | 0.15507 (6) | 0.7121 (2) | 1.02255 (11) | 0.0464 (4) | |
C8 | 0.11880 (6) | 0.8073 (2) | 0.72951 (12) | 0.0378 (4) | |
O3 | 0.17768 (5) | 0.7877 (2) | 0.87122 (9) | 0.0576 (4) | |
C7 | 0.13716 (6) | 0.7739 (3) | 0.83134 (12) | 0.0418 (4) | |
C11 | 0.09121 (6) | 0.8598 (2) | 0.54287 (12) | 0.0393 (4) | |
C3 | 0.21046 (6) | 0.6165 (2) | 1.30383 (12) | 0.0406 (4) | |
N4 | 0.07617 (6) | 0.8875 (2) | 0.44189 (11) | 0.0494 (4) | |
N1 | 0.22987 (6) | 0.5784 (2) | 1.40277 (11) | 0.0501 (4) | |
N3 | 0.10573 (6) | 0.7234 (2) | 0.87465 (11) | 0.0443 (4) | |
C6 | 0.17262 (6) | 0.6799 (2) | 1.11874 (12) | 0.0402 (4) | |
O4 | 0.10416 (6) | 0.8676 (3) | 0.39985 (10) | 0.0737 (5) | |
C12 | 0.06084 (7) | 0.8910 (3) | 0.59207 (13) | 0.0473 (5) | |
H12 | 0.0315 | 0.9292 | 0.5624 | 0.057* | |
O1 | 0.20702 (6) | 0.6125 (2) | 1.45421 (11) | 0.0714 (5) | |
C10 | 0.13499 (7) | 0.8041 (3) | 0.58343 (13) | 0.0450 (5) | |
H10 | 0.1548 | 0.7844 | 0.5487 | 0.054* | |
C5 | 0.21595 (7) | 0.6070 (3) | 1.15057 (13) | 0.0440 (5) | |
H5 | 0.2322 | 0.5810 | 1.1095 | 0.053* | |
C4 | 0.23498 (6) | 0.5731 (3) | 1.24383 (13) | 0.0433 (4) | |
H4 | 0.2637 | 0.5222 | 1.2656 | 0.052* | |
C13 | 0.07482 (6) | 0.8645 (3) | 0.68621 (13) | 0.0455 (5) | |
H13 | 0.0548 | 0.8850 | 0.7204 | 0.055* | |
C9 | 0.14873 (6) | 0.7782 (3) | 0.67771 (13) | 0.0434 (4) | |
H9 | 0.1783 | 0.7409 | 0.7069 | 0.052* | |
C2 | 0.16818 (7) | 0.6953 (3) | 1.27367 (13) | 0.0467 (5) | |
H2 | 0.1527 | 0.7270 | 1.3153 | 0.056* | |
C20 | 0.11244 (7) | 0.6852 (3) | 0.96836 (13) | 0.0420 (4) | |
C1 | 0.14910 (7) | 0.7265 (3) | 1.18041 (13) | 0.0479 (5) | |
H1 | 0.1206 | 0.7787 | 1.1591 | 0.057* | |
O2 | 0.26788 (6) | 0.5125 (3) | 1.42899 (10) | 0.0722 (5) | |
O5 | 0.03714 (6) | 0.9316 (3) | 0.40451 (10) | 0.0722 (5) | |
O6 | 0.0000 | 0.6468 (3) | 0.7500 | 0.0792 (8) | |
C15 | 0.0000 | 0.4863 (4) | 0.7500 | 0.0500 (7) | |
C14 | −0.03535 (9) | 0.3861 (3) | 0.7781 (2) | 0.0754 (7) | |
H14A | −0.0541 | 0.4678 | 0.7990 | 0.113* | |
H14B | −0.0210 | 0.3057 | 0.8270 | 0.113* | |
H14C | −0.0538 | 0.3203 | 0.7265 | 0.113* | |
H3A | 0.0780 (7) | 0.711 (3) | 0.8413 (14) | 0.049 (6)* | |
H2A | 0.1744 (9) | 0.733 (4) | 0.9897 (18) | 0.081 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0563 (4) | 0.0823 (4) | 0.0462 (3) | −0.0144 (3) | 0.0194 (3) | 0.0088 (3) |
N2 | 0.0452 (10) | 0.0642 (11) | 0.0310 (8) | −0.0001 (8) | 0.0131 (7) | 0.0046 (7) |
C8 | 0.0392 (10) | 0.0399 (10) | 0.0344 (9) | −0.0020 (7) | 0.0112 (7) | 0.0026 (7) |
O3 | 0.0408 (8) | 0.0929 (12) | 0.0379 (7) | −0.0029 (7) | 0.0096 (6) | 0.0058 (7) |
C7 | 0.0420 (10) | 0.0464 (11) | 0.0371 (10) | −0.0002 (8) | 0.0122 (8) | 0.0013 (8) |
C11 | 0.0419 (10) | 0.0420 (10) | 0.0339 (9) | −0.0017 (8) | 0.0111 (8) | 0.0008 (7) |
C3 | 0.0459 (11) | 0.0421 (10) | 0.0321 (9) | −0.0038 (8) | 0.0091 (8) | 0.0008 (7) |
N4 | 0.0564 (11) | 0.0560 (11) | 0.0353 (9) | 0.0027 (8) | 0.0126 (8) | −0.0015 (7) |
N1 | 0.0566 (11) | 0.0545 (10) | 0.0368 (9) | −0.0028 (8) | 0.0099 (8) | 0.0020 (7) |
N3 | 0.0400 (9) | 0.0574 (10) | 0.0340 (8) | −0.0039 (8) | 0.0089 (7) | 0.0049 (7) |
C6 | 0.0458 (10) | 0.0433 (10) | 0.0317 (9) | −0.0013 (8) | 0.0119 (8) | 0.0012 (8) |
O4 | 0.0754 (12) | 0.1094 (15) | 0.0437 (9) | 0.0136 (10) | 0.0289 (8) | 0.0056 (9) |
C12 | 0.0370 (10) | 0.0629 (13) | 0.0415 (10) | 0.0084 (9) | 0.0108 (8) | 0.0091 (9) |
O1 | 0.0845 (12) | 0.0950 (13) | 0.0394 (8) | 0.0095 (10) | 0.0257 (8) | 0.0075 (8) |
C10 | 0.0427 (11) | 0.0536 (12) | 0.0426 (10) | 0.0032 (9) | 0.0189 (8) | −0.0015 (9) |
C5 | 0.0419 (10) | 0.0553 (12) | 0.0379 (10) | −0.0018 (8) | 0.0164 (8) | −0.0049 (8) |
C4 | 0.0382 (10) | 0.0493 (11) | 0.0411 (10) | 0.0002 (8) | 0.0096 (8) | −0.0024 (8) |
C13 | 0.0395 (10) | 0.0596 (12) | 0.0415 (10) | 0.0052 (9) | 0.0184 (8) | 0.0060 (9) |
C9 | 0.0351 (10) | 0.0529 (12) | 0.0415 (10) | 0.0047 (8) | 0.0101 (8) | 0.0021 (8) |
C2 | 0.0505 (12) | 0.0576 (12) | 0.0359 (10) | 0.0067 (9) | 0.0187 (8) | 0.0008 (9) |
C20 | 0.0487 (11) | 0.0420 (10) | 0.0363 (10) | 0.0010 (8) | 0.0138 (8) | 0.0027 (8) |
C1 | 0.0477 (11) | 0.0570 (12) | 0.0390 (10) | 0.0132 (9) | 0.0130 (8) | 0.0037 (9) |
O2 | 0.0641 (10) | 0.0925 (13) | 0.0481 (9) | 0.0169 (9) | −0.0016 (7) | 0.0059 (9) |
O5 | 0.0597 (10) | 0.1078 (14) | 0.0417 (8) | 0.0188 (9) | 0.0038 (7) | 0.0013 (9) |
O6 | 0.0867 (19) | 0.0590 (15) | 0.111 (2) | 0.000 | 0.0586 (17) | 0.000 |
C15 | 0.0476 (16) | 0.060 (2) | 0.0417 (15) | 0.000 | 0.0121 (12) | 0.000 |
C14 | 0.0655 (16) | 0.0731 (17) | 0.096 (2) | −0.0050 (13) | 0.0367 (15) | 0.0070 (14) |
S1—C20 | 1.659 (2) | N3—H3A | 0.86 (2) |
N2—C20 | 1.344 (3) | C6—C1 | 1.391 (3) |
N2—C6 | 1.423 (2) | C6—C5 | 1.392 (3) |
N2—H2A | 0.90 (3) | C12—C13 | 1.383 (3) |
C8—C13 | 1.389 (3) | C12—H12 | 0.9300 |
C8—C9 | 1.397 (3) | C10—C9 | 1.385 (3) |
C8—C7 | 1.505 (3) | C10—H10 | 0.9300 |
O3—C7 | 1.221 (2) | C5—C4 | 1.389 (3) |
C7—N3 | 1.378 (2) | C5—H5 | 0.9300 |
C11—C10 | 1.373 (3) | C4—H4 | 0.9300 |
C11—C12 | 1.382 (3) | C13—H13 | 0.9300 |
C11—N4 | 1.483 (2) | C9—H9 | 0.9300 |
C3—C2 | 1.381 (3) | C2—C1 | 1.386 (3) |
C3—C4 | 1.387 (3) | C2—H2 | 0.9300 |
C3—N1 | 1.475 (2) | C1—H1 | 0.9300 |
N4—O5 | 1.215 (2) | O6—C15 | 1.209 (4) |
N4—O4 | 1.227 (2) | C15—C14 | 1.489 (3) |
N1—O2 | 1.225 (2) | C14—H14A | 0.9600 |
N1—O1 | 1.226 (2) | C14—H14B | 0.9600 |
N3—C20 | 1.409 (2) | C14—H14C | 0.9600 |
C20—N2—C6 | 127.59 (17) | C11—C10—H10 | 121.1 |
C20—N2—H2A | 112.0 (17) | C9—C10—H10 | 121.1 |
C6—N2—H2A | 119.4 (17) | C4—C5—C6 | 119.93 (17) |
C13—C8—C9 | 119.73 (17) | C4—C5—H5 | 120.0 |
C13—C8—C7 | 123.80 (16) | C6—C5—H5 | 120.0 |
C9—C8—C7 | 116.46 (16) | C3—C4—C5 | 118.84 (18) |
O3—C7—N3 | 123.16 (17) | C3—C4—H4 | 120.6 |
O3—C7—C8 | 120.96 (16) | C5—C4—H4 | 120.6 |
N3—C7—C8 | 115.86 (16) | C12—C13—C8 | 119.79 (17) |
C10—C11—C12 | 122.83 (17) | C12—C13—H13 | 120.1 |
C10—C11—N4 | 118.20 (16) | C8—C13—H13 | 120.1 |
C12—C11—N4 | 118.96 (17) | C10—C9—C8 | 120.85 (17) |
C2—C3—C4 | 121.85 (17) | C10—C9—H9 | 119.6 |
C2—C3—N1 | 118.69 (17) | C8—C9—H9 | 119.6 |
C4—C3—N1 | 119.46 (18) | C3—C2—C1 | 119.02 (18) |
O5—N4—O4 | 122.79 (18) | C3—C2—H2 | 120.5 |
O5—N4—C11 | 119.06 (17) | C1—C2—H2 | 120.5 |
O4—N4—C11 | 118.14 (17) | N2—C20—N3 | 114.45 (16) |
O2—N1—O1 | 123.50 (18) | N2—C20—S1 | 127.59 (15) |
O2—N1—C3 | 118.07 (17) | N3—C20—S1 | 117.96 (15) |
O1—N1—C3 | 118.43 (18) | C2—C1—C6 | 120.06 (18) |
C7—N3—C20 | 128.92 (17) | C2—C1—H1 | 120.0 |
C7—N3—H3A | 117.7 (14) | C6—C1—H1 | 120.0 |
C20—N3—H3A | 113.4 (14) | O6—C15—C14 | 120.45 (15) |
C1—C6—C5 | 120.22 (17) | C15—C14—H14A | 109.5 |
C1—C6—N2 | 122.44 (18) | C15—C14—H14B | 109.5 |
C5—C6—N2 | 117.26 (16) | H14A—C14—H14B | 109.5 |
C11—C12—C13 | 118.96 (17) | C15—C14—H14C | 109.5 |
C11—C12—H12 | 120.5 | H14A—C14—H14C | 109.5 |
C13—C12—H12 | 120.5 | H14B—C14—H14C | 109.5 |
C11—C10—C9 | 117.83 (17) | ||
C13—C8—C7—O3 | −152.9 (2) | C1—C6—C5—C4 | 2.9 (3) |
C9—C8—C7—O3 | 26.9 (3) | N2—C6—C5—C4 | 179.80 (17) |
C13—C8—C7—N3 | 28.7 (3) | C2—C3—C4—C5 | −1.2 (3) |
C9—C8—C7—N3 | −151.55 (18) | N1—C3—C4—C5 | 178.93 (17) |
C10—C11—N4—O5 | 177.8 (2) | C6—C5—C4—C3 | −1.3 (3) |
C12—C11—N4—O5 | −2.3 (3) | C11—C12—C13—C8 | 0.0 (3) |
C10—C11—N4—O4 | −3.4 (3) | C9—C8—C13—C12 | 0.5 (3) |
C12—C11—N4—O4 | 176.51 (19) | C7—C8—C13—C12 | −179.73 (18) |
C2—C3—N1—O2 | −178.25 (19) | C11—C10—C9—C8 | 0.3 (3) |
C4—C3—N1—O2 | 1.6 (3) | C13—C8—C9—C10 | −0.6 (3) |
C2—C3—N1—O1 | 2.5 (3) | C7—C8—C9—C10 | 179.60 (18) |
C4—C3—N1—O1 | −177.63 (19) | C4—C3—C2—C1 | 2.1 (3) |
O3—C7—N3—C20 | 2.4 (3) | N1—C3—C2—C1 | −178.03 (18) |
C8—C7—N3—C20 | −179.26 (18) | C6—N2—C20—N3 | −177.66 (18) |
C20—N2—C6—C1 | −43.5 (3) | C6—N2—C20—S1 | 1.7 (3) |
C20—N2—C6—C5 | 139.8 (2) | C7—N3—C20—N2 | 4.1 (3) |
C10—C11—C12—C13 | −0.3 (3) | C7—N3—C20—S1 | −175.35 (17) |
N4—C11—C12—C13 | 179.78 (18) | C3—C2—C1—C6 | −0.5 (3) |
C12—C11—C10—C9 | 0.2 (3) | C5—C6—C1—C2 | −2.0 (3) |
N4—C11—C10—C9 | −179.88 (17) | N2—C6—C1—C2 | −178.72 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···S1 | 0.93 | 2.79 | 3.235 (2) | 111 |
N2—H2A···O3 | 0.90 (3) | 1.88 (3) | 2.659 (3) | 144 (2) |
C2—H2···O4i | 0.93 | 2.48 | 3.394 (3) | 167 |
C12—H12···O5ii | 0.93 | 2.54 | 3.318 (3) | 141 |
N3—H3A···O6 | 0.86 (2) | 2.442 (19) | 3.300 (2) | 175 (2) |
C13—H13···O6 | 0.93 | 2.59 | 3.207 (3) | 124 |
C14—H14B···O5iii | 0.96 | 2.56 | 3.446 (3) | 154 |
C14—H14C···O4iv | 0.96 | 2.52 | 3.476 (3) | 175 |
Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z+1; (iii) x, −y+1, z+1/2; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H10N4O5S·0.5C3H6O |
Mr | 375.36 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 30.828 (14), 7.534 (3), 15.224 (7) |
β (°) | 107.262 (12) |
V (Å3) | 3377 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.34 × 0.31 × 0.27 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.924, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9659, 3926, 2804 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.133, 1.05 |
No. of reflections | 3926 |
No. of parameters | 245 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.28 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···S1 | 0.93 | 2.79 | 3.235 (2) | 111 |
N2—H2A···O3 | 0.90 (3) | 1.88 (3) | 2.659 (3) | 144 (2) |
C2—H2···O4i | 0.93 | 2.48 | 3.394 (3) | 167 |
C12—H12···O5ii | 0.93 | 2.54 | 3.318 (3) | 141 |
N3—H3A···O6 | 0.86 (2) | 2.442 (19) | 3.300 (2) | 175 (2) |
C13—H13···O6 | 0.93 | 2.59 | 3.207 (3) | 124 |
C14—H14B···O5iii | 0.96 | 2.56 | 3.446 (3) | 154 |
C14—H14C···O4iv | 0.96 | 2.52 | 3.476 (3) | 175 |
Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z+1; (iii) x, −y+1, z+1/2; (iv) −x, −y+1, −z+1. |
Acknowledgements
Financial support of this work by the Foundation of Northwest University for Nationalities is acknowledged.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525. Web of Science CrossRef CAS Google Scholar
Jones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669. Web of Science CrossRef CAS Google Scholar
Kushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett. 62, 3931–3933. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, B.-Q. (2005). Acta Cryst. E61, o3492–o3494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Su, B.-Q. (2007). J. Chem. Crystallogr. 37, 87–90. Web of Science CSD CrossRef CAS Google Scholar
Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Slicon, 181, 745–750. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives are broadly applied in anion recognition, nonlinear optics and catalysis, and display also high bioactivity and good coordination ability (Choi et al., 2008; Kushwaha et al., 2008; Jones et al. 2008; Su et al., 2006). As part of our research on thiourea coordination chemistry, we are interested in the study of the influence of noncovalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzoylthiourea with transition metal ions. In the present paper, the crystal structure of the title compound is reported.
In the molecule of the title compound (Fig. 1), the nitrobenzoyl and nitrophenyl groups have trans and cis configurations, respectively, with respect of the thiourea S atom. The dihedral angle formed by the two aromatic rings is 7.68 (6)°. The molecular conformation is stabilized by intramolecular N—H···O and C—H···S hydrogen bonds (Table 1) forming six-membered rings of graph set S(6) (Bernstein et al., 1995). This conformation is similar to that reported for N-(4-chlorophenyl)-N'-(4-nitrobenzoyl)urea (Su, 2005) and for N-(p-nitrobenzoyl)-N'-(p-chlorophenyl)thiourea (Su, 2007). The acetone solvent molecule has a crystallographically imposed twofold symmetry. In the crystal packing (Fig. 2), thiourea molecules are linked into chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds (Table 1). These chains are further bridged via N—H···O and C—H···O hydrogen bonds (Table 1) involving the acetone molecules.