metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1383-m1384

trans-Bis(methanol-κO)bis­­(quinoline-2-carboxyl­ato-κ2N,O)manganese(II)

aFaculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-37 Wrocław, Poland, and bFaculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: danuta.dobrzynska@pwr.wroc.pl

(Received 18 September 2008; accepted 3 October 2008; online 11 October 2008)

The title compound, [Mn(C10H6NO2)2(CH4O)2], was obtained unintentionally as the product of an attempt to synthesize a polynuclear carboxyl­ate bridged manganese(III/IV) complex, using methanol to reduce the permanganate ion. The mol­ecule is centrosymmetric; the pairs of equivalent ligands coordinate trans to each other in a distorted octa­hedral geometry. Intra­molecular C—H⋯O bonds lying in the equatorial plane stabilize the mol­ecule. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, creating a three-dimensional supra­molecular structure. ππ and C—H⋯π inter­actions are also observed. The dihedral angle and centroid-to-centroid distance between the pyridine ring (A) and the benzene ring (Bi) of a symmetrically related mol­ecule [symmetry code: (i) −1 − x, −y, −z] are 1.27 (11)° and 3.974 (2) Å, respectively. For the C—H⋯π inter­actions, the relevant distances and angles are: C⋯Cg[Aii] = 3.643 (2) Å, H⋯Cg[Aii] = 2.750 (2) Å and C—H⋯Cg[Aii] = 155 (1)° [symmetry code: (ii) x, −1 + y, z].

Related literature

For previously reported MnII complexes with the quinoline-2 carboxyl­ate ligand, see: Okabe &Koizumi (1997[Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852-854.]); Goher & Mautner (1993[Goher, M. A. S. & Mautner, F. A. (1993). Polyhedron, 12, 1863-1870.]); Haendler (1996[Haendler, H. M. (1996). Acta Cryst. C52, 801-803.]); Dobrzyńska & Jerzykiewicz (2004[Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Am. Chem. Soc. 126, 11118-11119.]); Dobrzyńska et al. (2005[Dobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945-1951.], 2006[Dobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Słoniec, E. (2006). Pol. J. Chem. 80, 1789-1797.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H6NO2)2(CH4O)2]

  • Mr = 463.34

  • Monoclinic, P 21 /n

  • a = 10.596 (5) Å

  • b = 7.243 (3) Å

  • c = 13.534 (3) Å

  • β = 106.59 (4)°

  • V = 995.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 100 (1) K

  • 0.43 × 0.12 × 0.09 mm

Data collection
  • Kuma KM-4 CCD κ-axis diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.873, Tmax = 0.902

  • 5405 measured reflections

  • 1924 independent reflections

  • 1475 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 0.98

  • 1924 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.80 (3) 1.83 (3) 2.623 (3) 172 (3)
C2—H2A⋯O1ii 0.93 2.58 3.411 (3) 148
C8—H8A⋯O1iii 0.93 2.36 3.241 (3) 158
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

The quinoline-2-carboxylate (quin-2-c) ion is known as an effective chelator. A few Mn(II) complexes with the quin-2-c ion and different coligands have been reported previously (Okabe et al., 1997, Goher et al., 1993, Haendler, 1996, Dobrzyńska et al., 2004, 2005, 2006). The title complex, (I), is centrosymmetric (Fig. 1). The quin-2-c ion coordinates in a typical O,N chelate mode. The pairs of the equivalent ligands lie trans to each other in a distorted octahedral geometry. The bite angle of the chelating ligand is 74.93 (7)° and falls in the range observed for other manganese(II) complexes with the quin-2-c ion (73.1° - 78.5°; see references quoted above). The intramolecular C—H···O bonds lying in the equatorial plane stabilize the molecule (Table 1).

In the crystal molecules are linked by O—H···O and C—H···O hydrogen bonds creating a three-dimensional supramolecular structure (see Table 1 and Fig. 2). π···π and C-H···π interactions are also observed. The dihedral angle and centroid-to-centroid distance between rings A [= N1,C1-C4,C9] and Bi [= (C4-C9)i; symmetry code (i) -1-x, -y,-z)] are 1.27° and 3.974 Å, respectively. For the C-H···π interactions the relevant distances and angles are: d(C11···Cg[Aii] = 3.643 Å, d(H11A···Cg[Aii]) = 2.750 Å with angle (C11-H11A···Cg[Aii] = 155° (symmetry code (ii) x, -1+y, z).

Related literature top

For previously reported MnII complexes with the quinoline-2 carboxylate ligand, see: Okabe et al. (1997); Goher et al. (1993); Haendler (1996); Dobrzyńska et al. (2004, 2005, 2006).

Experimental top

Compound (I) was obtained unintentionally as the product of an attempt to synthesize the polynuclear, carboxylate bridged manganese(III/IV) complex mixing a methanol solution of quinoline-2-carboxylic acid and potassium permanganate at room temperature.

Refinement top

The hydroxyl H-atom was located in a difference Fourier map and refined isotropically with the O-H distance restrained to 0.80 (3) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 - 0.96 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of compound (I), showing one layer of molecules connected by O—H···O and C—H···O hydrogen bonds (dashed lines). H and O atoms participating in O—H···O bonds are shown as balls.
trans-Bis(methanol-κO)bis(quinoline-2-carboxylato-κ2N,O)manganese(II) top
Crystal data top
[Mn(C10H6NO2)2(CH4O)2]F(000) = 478
Mr = 463.34Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3842 reflections
a = 10.596 (5) Åθ = 3–26°
b = 7.243 (3) ŵ = 0.71 mm1
c = 13.534 (3) ÅT = 100 K
β = 106.59 (4)°Block, yellow
V = 995.5 (7) Å30.43 × 0.12 × 0.09 mm
Z = 2
Data collection top
Kuma KM-4-CCD κ-axis
diffractometer
1924 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1312
Tmin = 0.873, Tmax = 0.902k = 86
5405 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
1924 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C10H6NO2)2(CH4O)2]V = 995.5 (7) Å3
Mr = 463.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.596 (5) ŵ = 0.71 mm1
b = 7.243 (3) ÅT = 100 K
c = 13.534 (3) Å0.43 × 0.12 × 0.09 mm
β = 106.59 (4)°
Data collection top
Kuma KM-4-CCD κ-axis
diffractometer
1924 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
1475 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.902Rint = 0.031
5405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.37 e Å3
1924 reflectionsΔρmin = 0.31 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.01282 (16)
O10.06256 (14)0.0841 (2)0.15489 (11)0.0151 (3)
O20.21857 (15)0.2157 (2)0.28166 (11)0.0235 (4)
O30.08755 (15)0.2745 (2)0.04702 (12)0.0179 (4)
N10.21067 (17)0.1118 (2)0.02417 (13)0.0126 (4)
C10.2606 (2)0.1766 (3)0.11886 (16)0.0137 (5)
C20.3844 (2)0.2649 (3)0.15224 (16)0.0166 (5)
H2A0.41570.31010.21910.020*
C30.4573 (2)0.2825 (3)0.08415 (17)0.0187 (5)
H3A0.53910.34000.10470.022*
C40.4091 (2)0.2138 (3)0.01703 (16)0.0156 (5)
C50.4793 (2)0.2244 (3)0.09220 (17)0.0184 (5)
H5A0.56120.28180.07560.022*
C60.4280 (2)0.1518 (3)0.18819 (17)0.0196 (5)
H6A0.47510.16000.23640.024*
C70.3044 (2)0.0644 (3)0.21473 (17)0.0184 (5)
H7A0.27130.01360.28020.022*
C80.2318 (2)0.0528 (3)0.14573 (16)0.0153 (5)
H8A0.14940.00310.16470.018*
C90.2833 (2)0.1269 (3)0.04511 (16)0.0132 (5)
C100.1752 (2)0.1571 (3)0.19219 (16)0.0145 (5)
C110.1393 (2)0.3854 (3)0.02034 (17)0.0207 (5)
H11A0.17300.49900.01360.031*
H11B0.20900.31960.03730.031*
H11C0.07050.41180.08230.031*
H30.141 (3)0.280 (4)0.102 (2)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0121 (2)0.0150 (3)0.0109 (2)0.0008 (2)0.00264 (18)0.0002 (2)
O10.0141 (8)0.0196 (8)0.0121 (7)0.0013 (6)0.0045 (6)0.0006 (6)
O20.0180 (8)0.0358 (10)0.0161 (8)0.0018 (7)0.0040 (7)0.0060 (7)
O30.0188 (8)0.0180 (8)0.0143 (8)0.0024 (7)0.0007 (7)0.0003 (7)
N10.0132 (9)0.0113 (9)0.0131 (9)0.0014 (7)0.0035 (7)0.0022 (7)
C10.0121 (10)0.0118 (11)0.0168 (11)0.0023 (8)0.0035 (9)0.0017 (9)
C20.0149 (11)0.0158 (11)0.0179 (11)0.0003 (9)0.0027 (9)0.0044 (9)
C30.0150 (11)0.0148 (11)0.0248 (12)0.0041 (9)0.0032 (10)0.0033 (10)
C40.0154 (11)0.0113 (10)0.0200 (12)0.0015 (8)0.0049 (9)0.0031 (9)
C50.0141 (11)0.0157 (11)0.0265 (13)0.0004 (9)0.0078 (10)0.0037 (10)
C60.0197 (12)0.0205 (12)0.0224 (12)0.0037 (10)0.0120 (10)0.0067 (10)
C70.0206 (12)0.0200 (11)0.0148 (11)0.0023 (9)0.0053 (10)0.0010 (9)
C80.0144 (11)0.0153 (11)0.0158 (11)0.0013 (8)0.0037 (9)0.0026 (8)
C90.0142 (11)0.0095 (11)0.0167 (11)0.0022 (8)0.0056 (9)0.0018 (9)
C100.0144 (11)0.0147 (11)0.0119 (11)0.0028 (9)0.0001 (9)0.0003 (9)
C110.0228 (12)0.0167 (12)0.0223 (12)0.0006 (10)0.0058 (10)0.0002 (10)
Geometric parameters (Å, º) top
Mn1—O12.100 (2)C4—C91.424 (3)
Mn1—O32.209 (2)C4—C51.424 (3)
Mn1—N12.308 (2)C5—C61.363 (3)
Mn1—O1i2.100 (2)C6—C71.406 (3)
Mn1—O3i2.209 (2)C7—C81.372 (3)
Mn1—N1i2.308 (2)C8—C91.420 (3)
O1—C101.271 (3)C2—H2A0.93
O2—C101.241 (3)C3—H3A0.93
O3—C111.436 (3)C5—H5A0.93
O3—H30.80 (3)C6—H6A0.93
N1—C11.325 (3)C7—H7A0.93
N1—C91.377 (3)C8—H8A0.93
C1—C101.529 (3)C11—H11A0.96
C1—C21.413 (3)C11—H11B0.96
C2—C31.367 (3)C11—H11C0.96
C3—C41.409 (3)
O1—Mn1—O389.23 (7)C3—C4—C5123.9 (2)
O1—Mn1—N174.93 (7)C4—C5—C6120.9 (2)
O1—Mn1—O1i180.00C5—C6—C7120.4 (2)
O1—Mn1—O3i90.77 (7)C6—C7—C8121.1 (2)
O1—Mn1—N1i105.07 (7)C7—C8—C9119.6 (2)
O3—Mn1—N188.01 (7)N1—C9—C8119.1 (2)
O1i—Mn1—O390.77 (7)C4—C9—C8119.8 (2)
O3—Mn1—O3i180.00N1—C9—C4121.06 (19)
O3—Mn1—N1i91.99 (7)O2—C10—C1118.6 (2)
O1i—Mn1—N1105.07 (7)O1—C10—O2125.0 (2)
O3i—Mn1—N191.99 (7)O1—C10—C1116.33 (18)
N1—Mn1—N1i180.00C1—C2—H2A121.00
O1i—Mn1—O3i89.23 (7)C3—C2—H2A121.00
O1i—Mn1—N1i74.93 (7)C2—C3—H3A120.00
O3i—Mn1—N1i88.01 (7)C4—C3—H3A120.00
Mn1—O1—C10120.67 (14)C4—C5—H5A120.00
Mn1—O3—C11121.70 (13)C6—C5—H5A120.00
C11—O3—H3105 (2)C5—C6—H6A120.00
Mn1—O3—H3116 (2)C7—C6—H6A120.00
Mn1—N1—C9129.59 (14)C6—C7—H7A119.00
C1—N1—C9118.96 (19)C8—C7—H7A119.00
Mn1—N1—C1111.36 (15)C7—C8—H8A120.00
C2—C1—C10120.13 (19)C9—C8—H8A120.00
N1—C1—C2123.2 (2)O3—C11—H11A109.00
N1—C1—C10116.64 (19)O3—C11—H11B109.00
C1—C2—C3118.6 (2)O3—C11—H11C109.00
C2—C3—C4120.3 (2)H11A—C11—H11B109.00
C3—C4—C9117.9 (2)H11A—C11—H11C109.00
C5—C4—C9118.26 (19)H11B—C11—H11C110.00
O3—Mn1—O1—C1089.82 (16)C1—N1—C9—C41.3 (3)
N1—Mn1—O1—C101.67 (15)Mn1—N1—C9—C4174.99 (15)
O3i—Mn1—O1—C1090.18 (16)Mn1—N1—C9—C85.6 (3)
N1i—Mn1—O1—C10178.33 (15)C10—C1—C2—C3179.0 (2)
O1—Mn1—O3—C11149.62 (16)C2—C1—C10—O1176.7 (2)
N1—Mn1—O3—C1174.68 (16)N1—C1—C10—O11.5 (3)
O1i—Mn1—O3—C1130.38 (16)N1—C1—C10—O2179.83 (19)
N1i—Mn1—O3—C11105.32 (16)N1—C1—C2—C30.9 (3)
O1—Mn1—N1—C12.35 (14)C2—C1—C10—O21.9 (3)
O1—Mn1—N1—C9178.82 (18)C1—C2—C3—C40.1 (3)
O3—Mn1—N1—C192.09 (14)C2—C3—C4—C90.1 (3)
O3—Mn1—N1—C991.44 (17)C2—C3—C4—C5179.2 (2)
O1i—Mn1—N1—C1177.65 (14)C3—C4—C9—N10.5 (3)
O1i—Mn1—N1—C91.18 (18)C3—C4—C5—C6178.7 (2)
O3i—Mn1—N1—C187.91 (14)C9—C4—C5—C60.6 (3)
O3i—Mn1—N1—C988.56 (17)C5—C4—C9—C80.4 (3)
Mn1—O1—C10—C10.8 (3)C3—C4—C9—C8178.9 (2)
Mn1—O1—C10—O2177.74 (17)C5—C4—C9—N1179.8 (2)
Mn1—N1—C1—C2175.44 (17)C4—C5—C6—C70.1 (3)
C9—N1—C1—C21.5 (3)C5—C6—C7—C81.1 (3)
C9—N1—C1—C10179.63 (18)C6—C7—C8—C91.3 (3)
Mn1—N1—C1—C102.7 (2)C7—C8—C9—N1178.9 (2)
C1—N1—C9—C8178.2 (2)C7—C8—C9—C40.5 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.80 (3)1.83 (3)2.623 (3)172 (3)
C2—H2A···O1iii0.932.583.411 (3)148
C8—H8A···O1i0.932.363.241 (3)158
Symmetry codes: (i) x, y, z; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C10H6NO2)2(CH4O)2]
Mr463.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.596 (5), 7.243 (3), 13.534 (3)
β (°) 106.59 (4)
V3)995.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.43 × 0.12 × 0.09
Data collection
DiffractometerKuma KM-4-CCD κ-axis
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.873, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
5405, 1924, 1475
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 0.98
No. of reflections1924
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL-NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.80 (3)1.83 (3)2.623 (3)172 (3)
C2—H2A···O1ii0.932.583.411 (3)148
C8—H8A···O1iii0.932.363.241 (3)158
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z.
 

Acknowledgements

The authors thank Wrocław University of Technology for financial support.

References

First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Am. Chem. Soc. 126, 11118–11119.  Web of Science PubMed Google Scholar
First citationDobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.  Google Scholar
First citationDobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Słoniec, E. (2006). Pol. J. Chem. 80, 1789–1797.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (1993). Polyhedron, 12, 1863–1870.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaendler, H. M. (1996). Acta Cryst. C52, 801–803.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1383-m1384
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds