metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new β-octa­molybdate(VI) salt based on 1,4-bis­­(2-methyl-1H-imidazol-1-yl)butane

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and bBiological Scientific and Technical College, Changchun University, Changchun 130022, People's Republic of China
*Correspondence e-mail: lishunli@yahoo.cn

(Received 12 September 2008; accepted 28 October 2008; online 8 November 2008)

The title compound, bis­[2,2′-dimethyl-3,3′-(butane-1,4-di­yl)diimidazol-1-ium] β-octa­molybdate(VI), (C12H20N4)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of Na2MoO4 and 1,4-bis­(2-methyl-1H-imidazol-1-yl)butane (hereafter L). The structure of the title compound consists of the β-octa­molybdate anions having a center of symmetry, and protonated [H2L]2+ cations, which link the β-octa­molybdate anions, generating a supra­molecular chain via hydrogen bonds.

Related literature

For the applications of polyoxometalates (POMs) chemistry, see: Kozhevnikov (1998[Kozhevnikov, I. V. (1998). Chem. Rev. 98, 171-198.]); Rhule et al. (1998[Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327-358.]); Li et al. (2007[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). Inorg. Chem. 46, 8283-8290.]). For the coordination ability of polyoxometalates with different transition-metal organic units, see: Hagrman et al. (1997[Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. 36, 873-876.]); Li et al. (2008[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Liu, J., Fu, Y.-M. & Su, Z.-M. (2008). Dalton Trans. pp. 2015-2025.]). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001[Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1-4.]); Wu et al. (2002[Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664-666.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H20N4)2[Mo8O26]

  • Mr = 1624.16

  • Triclinic, [P \overline 1]

  • a = 10.5680 (3) Å

  • b = 11.4890 (5) Å

  • c = 11.5600 (8) Å

  • α = 60.7770 (10)°

  • β = 68.1550 (10)°

  • γ = 70.4000 (10)°

  • V = 1116.29 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 (2) K

  • 0.27 × 0.26 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.49, Tmax = 0.63

  • 6962 measured reflections

  • 5123 independent reflections

  • 3776 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.04

  • 5123 reflections

  • 306 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O9i 0.87 (3) 2.37 (4) 3.031 (5) 134 (4)
N2—H2N⋯O10i 0.87 (3) 2.20 (2) 3.001 (5) 153 (5)
N4—H4N⋯O12ii 0.86 (3) 2.39 (4) 3.052 (5) 134 (4)
N4—H4N⋯O4iii 0.86 (3) 2.12 (3) 2.873 (4) 146 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y-1, z+1; (iii) -x, -y, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyoxometalates (POMs), a unique class of metal-oxide clusters, have many properties that make them attractive for applications in catalysis, biology, magnetism, optics, medicine, etc (Kozhevnikov, 1998; Rhule et al., 1998; Li et al., 2007). In recent times a remarkable approach to the construction of multifunctional materials is being realized exploting the ability of polyoxometalates to coordinate to different transition-metal organic units (Hagrman et al., 1997; Li et al., 2008). The POMs, acting as unusual inorganic ligands are introduced into a variety of POM-based coordination polymers with desired properties (Bu et al., 2001; Wu et al., 2002). During our ongoing studies of related materials, we obtained the title compound, (I), and present its crystal structure here.

The asymmetric unit of compound (I) contains a complete (C12H20N42+) cation (hereafter [H2L]2+) and half a [Mo8O26]4- anion. The complete [Mo8O26]4- moiety is generated from the asymmetric unit atoms by a crystallographic inversion center (Fig. 1). It consists of eight edge-sharing MoO6 octahedra and displays the characteristic β-octamolybdate arrangement. Each protonated [H2L]2+ cation donates two N—H···O hydrogen bonds to two terminal oxygen atoms from one [Mo8O26]4- anion and two ones to two bridging oxygen atoms from the other [Mo8O26]4- anion. So each [Mo8O26]4- anion joins four protonated [H2L]2+ cations (see the hydrogen bonding table for numerical values) to generate a one-dimensional supramolecular double-chain structure (Fig. 2).

Related literature top

For the applications of polyoxometalates (POMs) chemistry, see: Kozhevnikov (1998); Rhule et al. (1998); Li et al. (2007). For the coordination ability of polyoxometalates with different transition-metal organic units, see: Hagrman et al. (1997); Li et al. (2008). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002).

Experimental top

A mixture of Na2MoO4.2H2O (0.242 g, 1.0 mmol) and L (0.218 g, 1.0 mmol) in water (10 ml) was adjusted with HCl (2M) to pH = 3. Then the mixture was placed in a 23 ml Teflon-lined autoclave and kept under autogenous pressure at 150 °C for 2 days. After the mixture was cooled to room temperature at 10°C.h-1, colorless crystals of the title compound were obtained.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and Uiso=1.2Ueq (C). The H atoms of N2 and N4 were located in a difference Fourier map and then refined isotropically, with restrained N-H (0.87 (3)Å) and Uiso=1.5Ueq (N).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. All crystallographic related oxygen atoms are unlabled for clarity. Symmetry code: (i) 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. Ball-stick representation of the one-dimensional supramolecular structure of (I).
bis[2,2'-dimethyl-3,3'-(butane-1,4-diyl)diimidazol-1-ium] β-octamolybdate top
Crystal data top
(C12H20N4)2[Mo8O26]Z = 1
Mr = 1624.16F(000) = 784
Triclinic, P1Dx = 2.416 Mg m3
Hall symbol: -p1Mo Kα radiation, λ = 0.71069 Å
a = 10.5680 (3) ÅCell parameters from 879 reflections
b = 11.4890 (5) Åθ = 2.1–28.3°
c = 11.5600 (8) ŵ = 2.27 mm1
α = 60.777 (1)°T = 293 K
β = 68.155 (1)°Block, colorless
γ = 70.400 (1)°0.27 × 0.26 × 0.20 mm
V = 1116.29 (10) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
5123 independent reflections
Radiation source: fine-focus sealed tube3776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.49, Tmax = 0.63k = 815
6962 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
5123 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.71 e Å3
Crystal data top
(C12H20N4)2[Mo8O26]γ = 70.400 (1)°
Mr = 1624.16V = 1116.29 (10) Å3
Triclinic, P1Z = 1
a = 10.5680 (3) ÅMo Kα radiation
b = 11.4890 (5) ŵ = 2.27 mm1
c = 11.5600 (8) ÅT = 293 K
α = 60.777 (1)°0.27 × 0.26 × 0.20 mm
β = 68.155 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5123 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3776 reflections with I > 2σ(I)
Tmin = 0.49, Tmax = 0.63Rint = 0.016
6962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
5123 reflectionsΔρmin = 0.71 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4508 (5)0.2008 (5)0.1689 (5)0.0480 (13)
H10.50400.12220.21990.058*
C20.4674 (5)0.2537 (5)0.0338 (5)0.0516 (14)
H20.53450.21980.02730.062*
C30.2898 (5)0.3852 (5)0.1169 (5)0.0398 (12)
C40.1745 (7)0.4991 (6)0.1210 (6)0.078 (2)
H4A0.09290.46470.18630.117*
H4B0.15660.55240.03200.117*
H4C0.19830.55470.14750.117*
C50.2836 (5)0.2607 (5)0.3649 (4)0.0455 (13)
H5A0.24340.34770.37060.055*
H5B0.35890.21750.40990.055*
C60.1756 (5)0.1742 (5)0.4387 (4)0.0357 (11)
H6A0.21560.08640.43490.043*
H6B0.10020.21670.39400.043*
C70.1188 (5)0.1543 (5)0.5889 (5)0.0454 (13)
H7A0.18590.08930.64050.055*
H7B0.10350.23980.59430.055*
C80.0135 (5)0.1044 (5)0.6487 (4)0.0380 (11)
H8A0.08080.17240.59890.046*
H8B0.00180.02280.63620.046*
C90.0909 (5)0.1582 (4)0.8570 (5)0.0333 (10)
H90.06030.24010.81470.040*
C100.1608 (5)0.1011 (5)0.9878 (5)0.0375 (11)
H100.18870.13511.05360.045*
C110.1292 (4)0.0326 (4)0.8885 (4)0.0305 (10)
C120.1334 (6)0.1486 (5)0.8684 (5)0.0504 (14)
H12A0.20590.12340.82480.076*
H12B0.15110.22440.95570.076*
H12C0.04580.17350.81170.076*
O10.8514 (3)0.1866 (3)0.4043 (3)0.0368 (8)
O20.7405 (3)0.2236 (3)0.2112 (3)0.0440 (8)
O30.6495 (3)0.1219 (3)0.7129 (3)0.0382 (8)
O40.3883 (3)0.1137 (3)0.7404 (3)0.0358 (7)
O50.5723 (3)0.1829 (3)0.4809 (3)0.0296 (7)
O60.3415 (3)0.3836 (3)0.5375 (3)0.0242 (6)
O70.6125 (3)0.3992 (3)0.4802 (3)0.0224 (6)
O80.2891 (3)0.6211 (3)0.3047 (3)0.0350 (7)
O90.5161 (3)0.4268 (3)0.2790 (3)0.0280 (6)
O100.7738 (3)0.4496 (3)0.2258 (3)0.0289 (7)
O110.9029 (3)0.4409 (3)0.4018 (3)0.0368 (8)
O120.8404 (3)0.6795 (3)0.1956 (3)0.0368 (7)
O130.5532 (3)0.6534 (3)0.2769 (3)0.0228 (6)
Mo10.71426 (4)0.27605 (4)0.33399 (4)0.02625 (10)
Mo20.42574 (3)0.52592 (3)0.37192 (3)0.02135 (9)
Mo30.51296 (4)0.21069 (3)0.64292 (4)0.02435 (10)
Mo40.77331 (3)0.54199 (3)0.32507 (3)0.02360 (10)
N10.3404 (4)0.2840 (4)0.2189 (4)0.0347 (9)
N20.3664 (4)0.3676 (4)0.0030 (4)0.0434 (10)
H2N0.355 (5)0.420 (4)0.079 (2)0.064*
N30.0723 (3)0.0740 (3)0.7959 (3)0.0266 (8)
N40.1830 (4)0.0186 (4)1.0052 (4)0.0362 (9)
H4N0.220 (5)0.079 (4)1.082 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (3)0.046 (3)0.040 (3)0.004 (2)0.010 (2)0.009 (2)
C20.042 (3)0.059 (4)0.039 (3)0.003 (3)0.007 (2)0.025 (3)
C30.044 (3)0.037 (3)0.028 (2)0.013 (2)0.003 (2)0.012 (2)
C40.091 (5)0.053 (4)0.048 (4)0.012 (3)0.003 (3)0.018 (3)
C50.056 (3)0.065 (4)0.022 (2)0.035 (3)0.003 (2)0.013 (2)
C60.039 (3)0.045 (3)0.024 (2)0.016 (2)0.002 (2)0.016 (2)
C70.047 (3)0.063 (4)0.028 (3)0.028 (3)0.004 (2)0.018 (2)
C80.043 (3)0.050 (3)0.023 (2)0.020 (2)0.000 (2)0.017 (2)
C90.036 (3)0.028 (2)0.034 (3)0.0015 (19)0.010 (2)0.013 (2)
C100.038 (3)0.048 (3)0.030 (3)0.001 (2)0.008 (2)0.024 (2)
C110.029 (2)0.035 (3)0.027 (2)0.0091 (19)0.0080 (19)0.011 (2)
C120.064 (4)0.051 (3)0.043 (3)0.025 (3)0.012 (3)0.017 (3)
O10.0320 (17)0.0321 (18)0.0421 (19)0.0006 (14)0.0092 (15)0.0167 (15)
O20.054 (2)0.050 (2)0.0372 (19)0.0100 (17)0.0053 (16)0.0287 (17)
O30.0367 (18)0.0301 (17)0.0383 (18)0.0010 (14)0.0130 (15)0.0093 (14)
O40.0330 (17)0.0286 (17)0.0356 (18)0.0082 (13)0.0006 (14)0.0100 (14)
O50.0331 (16)0.0244 (15)0.0319 (16)0.0076 (13)0.0042 (13)0.0139 (13)
O60.0260 (15)0.0217 (14)0.0251 (15)0.0066 (12)0.0046 (12)0.0100 (12)
O70.0222 (14)0.0224 (14)0.0195 (14)0.0035 (11)0.0025 (11)0.0087 (12)
O80.0335 (17)0.0356 (18)0.0318 (17)0.0043 (14)0.0144 (14)0.0081 (14)
O90.0282 (16)0.0340 (17)0.0226 (15)0.0049 (13)0.0037 (12)0.0149 (13)
O100.0288 (16)0.0342 (17)0.0223 (15)0.0055 (13)0.0011 (12)0.0164 (13)
O110.0273 (16)0.0384 (19)0.0373 (18)0.0035 (14)0.0056 (14)0.0139 (15)
O120.0338 (17)0.0374 (18)0.0343 (18)0.0156 (14)0.0015 (14)0.0109 (14)
O130.0231 (14)0.0254 (15)0.0178 (14)0.0056 (12)0.0043 (11)0.0074 (12)
Mo10.0270 (2)0.0275 (2)0.02393 (19)0.00334 (15)0.00188 (15)0.01489 (16)
Mo20.02117 (18)0.02459 (19)0.01723 (18)0.00511 (14)0.00434 (13)0.00779 (14)
Mo30.02464 (19)0.02039 (19)0.02227 (19)0.00412 (14)0.00317 (15)0.00671 (15)
Mo40.01997 (18)0.0257 (2)0.02189 (19)0.00583 (14)0.00081 (14)0.00971 (15)
N10.041 (2)0.040 (2)0.025 (2)0.0187 (18)0.0054 (17)0.0099 (17)
N20.047 (2)0.041 (3)0.022 (2)0.008 (2)0.0007 (19)0.0061 (18)
N30.0265 (18)0.033 (2)0.0194 (17)0.0074 (15)0.0018 (14)0.0118 (15)
N40.035 (2)0.046 (3)0.0212 (19)0.0169 (19)0.0011 (17)0.0095 (18)
Geometric parameters (Å, º) top
C1—C21.334 (7)C11—C121.477 (6)
C1—N11.378 (6)C12—H12A0.9600
C1—H10.9300C12—H12B0.9600
C2—N21.367 (6)C12—H12C0.9600
C2—H20.9300O1—Mo11.697 (3)
C3—N11.319 (6)O2—Mo11.699 (3)
C3—N21.337 (6)O3—Mo31.688 (3)
C3—C41.465 (7)O4—Mo31.703 (3)
C4—H4A0.9600O5—Mo31.892 (3)
C4—H4B0.9600O5—Mo11.920 (3)
C4—H4C0.9600O6—Mo21.945 (3)
C5—N11.481 (5)O6—Mo32.362 (3)
C5—C61.492 (6)O7—Mo32.327 (2)
C5—H5A0.9700O7—Mo42.350 (3)
C5—H5B0.9700O7—Mo22.390 (3)
C6—C71.535 (6)O7—Mo12.444 (3)
C6—H6A0.9700O8—Mo21.682 (3)
C6—H6B0.9700O9—Mo21.750 (3)
C7—C81.480 (6)O9—Mo12.296 (3)
C7—H7A0.9700O10—Mo41.904 (3)
C7—H7B0.9700O10—Mo11.938 (3)
C8—N31.478 (5)O11—Mo41.686 (3)
C8—H8A0.9700O12—Mo41.700 (3)
C8—H8B0.9700O13—Mo21.954 (3)
C9—C101.337 (6)O13—Mo42.373 (3)
C9—N31.382 (5)Mo2—Mo4i3.2019 (5)
C9—H90.9300Mo2—Mo3i3.2144 (5)
C10—N41.377 (6)Mo4—O6i1.981 (3)
C10—H100.9300N2—H2N0.87 (3)
C11—N31.320 (5)N4—H4N0.86 (3)
C11—N41.322 (5)
C2—C1—N1107.4 (4)O5—Mo1—O773.80 (10)
C2—C1—H1126.3O10—Mo1—O774.23 (10)
N1—C1—H1126.3O9—Mo1—O769.81 (9)
C1—C2—N2106.5 (4)O8—Mo2—O9104.33 (14)
C1—C2—H2126.8O8—Mo2—O6101.53 (13)
N2—C2—H2126.8O9—Mo2—O696.72 (12)
N1—C3—N2106.9 (4)O8—Mo2—O13101.33 (13)
N1—C3—C4128.6 (5)O9—Mo2—O1395.61 (12)
N2—C3—C4124.6 (5)O6—Mo2—O13150.39 (11)
C3—C4—H4A109.5O8—Mo2—O7i99.39 (13)
C3—C4—H4B109.5O9—Mo2—O7i156.26 (12)
H4A—C4—H4B109.5O6—Mo2—O7i79.18 (10)
C3—C4—H4C109.5O13—Mo2—O7i78.73 (10)
H4A—C4—H4C109.5O8—Mo2—O7175.33 (12)
H4B—C4—H4C109.5O9—Mo2—O780.34 (11)
N1—C5—C6112.8 (4)O6—Mo2—O777.54 (10)
N1—C5—H5A109.0O13—Mo2—O778.15 (10)
C6—C5—H5A109.0O7i—Mo2—O775.94 (10)
N1—C5—H5B109.0O8—Mo2—Mo4i90.41 (10)
C6—C5—H5B109.0O9—Mo2—Mo4i132.43 (9)
H5A—C5—H5B107.8O6—Mo2—Mo4i35.72 (8)
C5—C6—C7110.9 (4)O13—Mo2—Mo4i125.92 (8)
C5—C6—H6A109.5O7i—Mo2—Mo4i47.21 (7)
C7—C6—H6A109.5O7—Mo2—Mo4i86.22 (6)
C5—C6—H6B109.5O8—Mo2—Mo3i90.58 (10)
C7—C6—H6B109.5O9—Mo2—Mo3i131.56 (9)
H6A—C6—H6B108.1O6—Mo2—Mo3i125.49 (8)
C8—C7—C6109.9 (4)O13—Mo2—Mo3i35.96 (8)
C8—C7—H7A109.7O7i—Mo2—Mo3i46.33 (7)
C6—C7—H7A109.7O7—Mo2—Mo3i86.33 (6)
C8—C7—H7B109.7Mo4i—Mo2—Mo3i92.286 (13)
C6—C7—H7B109.7O3—Mo3—O4104.79 (15)
H7A—C7—H7B108.2O3—Mo3—O5101.97 (14)
N3—C8—C7114.0 (4)O4—Mo3—O5101.64 (14)
N3—C8—H8A108.8O3—Mo3—O13i97.07 (13)
C7—C8—H8A108.8O4—Mo3—O13i100.09 (13)
N3—C8—H8B108.8O5—Mo3—O13i146.22 (11)
C7—C8—H8B108.8O3—Mo3—O796.22 (12)
H8A—C8—H8B107.6O4—Mo3—O7158.65 (12)
C10—C9—N3107.8 (4)O5—Mo3—O777.19 (10)
C10—C9—H9126.1O13i—Mo3—O773.19 (10)
N3—C9—H9126.1O3—Mo3—O6165.01 (12)
C9—C10—N4106.0 (4)O4—Mo3—O687.24 (12)
C9—C10—H10127.0O5—Mo3—O683.90 (11)
N4—C10—H10127.0O13i—Mo3—O671.63 (10)
N3—C11—N4108.0 (4)O7—Mo3—O671.41 (9)
N3—C11—C12127.0 (4)O3—Mo3—Mo2i86.46 (11)
N4—C11—C12125.0 (4)O4—Mo3—Mo2i135.19 (10)
C11—C12—H12A109.5O5—Mo3—Mo2i118.52 (8)
C11—C12—H12B109.5O13i—Mo3—Mo2i35.10 (7)
H12A—C12—H12B109.5O7—Mo3—Mo2i41.34 (6)
C11—C12—H12C109.5O6—Mo3—Mo2i78.65 (6)
H12A—C12—H12C109.5O11—Mo4—O12104.90 (15)
H12B—C12—H12C109.5O11—Mo4—O10101.89 (14)
Mo3—O5—Mo1117.70 (14)O12—Mo4—O10101.07 (14)
Mo2—O6—Mo4i109.31 (12)O11—Mo4—O6i98.62 (13)
Mo2—O6—Mo3110.72 (12)O12—Mo4—O6i100.79 (13)
Mo4i—O6—Mo3104.16 (11)O10—Mo4—O6i144.88 (11)
Mo2i—O7—Mo392.33 (9)O11—Mo4—O794.31 (12)
Mo2i—O7—Mo491.22 (10)O12—Mo4—O7160.60 (12)
Mo3—O7—Mo4163.12 (12)O10—Mo4—O777.14 (10)
Mo2i—O7—Mo2104.06 (10)O6i—Mo4—O773.14 (10)
Mo3—O7—Mo297.67 (9)O11—Mo4—O13164.42 (12)
Mo4—O7—Mo297.46 (9)O12—Mo4—O1389.13 (12)
Mo2i—O7—Mo1163.93 (13)O10—Mo4—O1381.58 (11)
Mo3—O7—Mo186.24 (8)O6i—Mo4—O1371.62 (10)
Mo4—O7—Mo185.80 (8)O7—Mo4—O1371.48 (9)
Mo2—O7—Mo191.98 (9)O11—Mo4—Mo2i86.16 (10)
Mo2—O9—Mo1117.87 (14)O12—Mo4—Mo2i135.73 (11)
Mo4—O10—Mo1116.36 (13)O10—Mo4—Mo2i118.71 (8)
Mo2—O13—Mo3i108.94 (12)O6i—Mo4—Mo2i34.97 (7)
Mo2—O13—Mo4110.49 (11)O7—Mo4—Mo2i41.57 (6)
Mo3i—O13—Mo4103.28 (11)O13—Mo4—Mo2i78.96 (6)
O1—Mo1—O2104.71 (15)C3—N1—C1109.3 (4)
O1—Mo1—O599.04 (13)C3—N1—C5125.2 (4)
O2—Mo1—O5103.61 (14)C1—N1—C5125.4 (4)
O1—Mo1—O1098.14 (13)C3—N2—C2109.9 (4)
O2—Mo1—O10101.72 (14)C3—N2—H2N126 (3)
O5—Mo1—O10144.48 (11)C2—N2—H2N125 (3)
O1—Mo1—O9163.59 (12)C11—N3—C9108.5 (4)
O2—Mo1—O991.61 (13)C11—N3—C8125.1 (4)
O5—Mo1—O978.38 (11)C9—N3—C8126.1 (4)
O10—Mo1—O976.43 (11)C11—N4—C10109.8 (4)
O1—Mo1—O793.85 (12)C11—N4—H4N125 (4)
O2—Mo1—O7161.41 (13)C10—N4—H4N125 (4)
N1—C1—C2—N20.6 (6)Mo1—O5—Mo3—O693.10 (15)
N1—C5—C6—C7179.3 (4)Mo1—O5—Mo3—Mo2i19.56 (18)
C5—C6—C7—C8163.4 (4)Mo2i—O7—Mo3—O377.41 (13)
C6—C7—C8—N3176.4 (4)Mo4—O7—Mo3—O324.5 (5)
N3—C9—C10—N40.5 (5)Mo2—O7—Mo3—O3178.06 (13)
Mo3—O5—Mo1—O171.31 (18)Mo1—O7—Mo3—O386.56 (12)
Mo3—O5—Mo1—O2178.95 (16)Mo2i—O7—Mo3—O492.4 (3)
Mo3—O5—Mo1—O1046.7 (3)Mo4—O7—Mo3—O4165.6 (4)
Mo3—O5—Mo1—O992.21 (16)Mo2—O7—Mo3—O412.1 (4)
Mo3—O5—Mo1—O720.10 (14)Mo1—O7—Mo3—O4103.6 (3)
Mo4—O10—Mo1—O169.16 (17)Mo2i—O7—Mo3—O5178.32 (12)
Mo4—O10—Mo1—O2176.11 (16)Mo4—O7—Mo3—O576.4 (4)
Mo4—O10—Mo1—O549.1 (3)Mo2—O7—Mo3—O577.15 (11)
Mo4—O10—Mo1—O995.07 (15)Mo1—O7—Mo3—O514.35 (10)
Mo4—O10—Mo1—O722.57 (13)Mo2i—O7—Mo3—O13i18.11 (10)
Mo2—O9—Mo1—O15.8 (5)Mo4—O7—Mo3—O13i120.1 (4)
Mo2—O9—Mo1—O2179.75 (17)Mo2—O7—Mo3—O13i86.41 (10)
Mo2—O9—Mo1—O576.68 (16)Mo1—O7—Mo3—O13i177.91 (10)
Mo2—O9—Mo1—O1078.08 (16)Mo2i—O7—Mo3—O693.89 (10)
Mo2—O9—Mo1—O70.15 (13)Mo4—O7—Mo3—O6164.2 (5)
Mo2i—O7—Mo1—O11.4 (5)Mo2—O7—Mo3—O610.64 (8)
Mo3—O7—Mo1—O183.95 (12)Mo1—O7—Mo3—O6102.14 (10)
Mo4—O7—Mo1—O181.15 (12)Mo4—O7—Mo3—Mo2i102.0 (5)
Mo2—O7—Mo1—O1178.50 (11)Mo2—O7—Mo3—Mo2i104.53 (11)
Mo2i—O7—Mo1—O2175.8 (4)Mo1—O7—Mo3—Mo2i163.97 (13)
Mo3—O7—Mo1—O298.9 (4)Mo2—O6—Mo3—O349.4 (5)
Mo4—O7—Mo1—O296.0 (4)Mo4i—O6—Mo3—O368.0 (5)
Mo2—O7—Mo1—O21.3 (4)Mo2—O6—Mo3—O4166.62 (16)
Mo2i—O7—Mo1—O599.7 (5)Mo4i—O6—Mo3—O475.99 (14)
Mo3—O7—Mo1—O514.36 (10)Mo2—O6—Mo3—O564.60 (14)
Mo4—O7—Mo1—O5179.46 (11)Mo4i—O6—Mo3—O5178.01 (13)
Mo2—O7—Mo1—O583.20 (11)Mo2—O6—Mo3—O13i91.79 (13)
Mo2i—O7—Mo1—O1096.0 (5)Mo4i—O6—Mo3—O13i25.60 (11)
Mo3—O7—Mo1—O10178.68 (11)Mo2—O6—Mo3—O713.91 (11)
Mo4—O7—Mo1—O1016.22 (10)Mo4i—O6—Mo3—O7103.48 (12)
Mo2—O7—Mo1—O1081.12 (11)Mo2—O6—Mo3—Mo2i56.15 (10)
Mo2i—O7—Mo1—O9177.0 (5)Mo4i—O6—Mo3—Mo2i61.24 (9)
Mo3—O7—Mo1—O997.65 (10)Mo1—O10—Mo4—O1168.55 (18)
Mo4—O7—Mo1—O997.25 (10)Mo1—O10—Mo4—O12176.55 (15)
Mo2—O7—Mo1—O90.09 (8)Mo1—O10—Mo4—O6i55.9 (3)
Mo1—O9—Mo2—O8179.70 (14)Mo1—O10—Mo4—O723.21 (14)
Mo1—O9—Mo2—O675.94 (15)Mo1—O10—Mo4—O1396.01 (15)
Mo1—O9—Mo2—O1377.08 (15)Mo1—O10—Mo4—Mo2i23.58 (18)
Mo1—O9—Mo2—O7i2.4 (4)Mo2i—O7—Mo4—O1179.27 (13)
Mo1—O9—Mo2—O70.14 (12)Mo3—O7—Mo4—O1122.9 (4)
Mo1—O9—Mo2—Mo4i75.60 (17)Mo2—O7—Mo4—O11176.38 (13)
Mo1—O9—Mo2—Mo3i76.39 (16)Mo1—O7—Mo4—O1184.92 (12)
Mo4i—O6—Mo2—O874.26 (16)Mo2i—O7—Mo4—O1292.7 (4)
Mo3—O6—Mo2—O8171.55 (14)Mo3—O7—Mo4—O12165.2 (4)
Mo4i—O6—Mo2—O9179.57 (13)Mo2—O7—Mo4—O1211.7 (4)
Mo3—O6—Mo2—O965.39 (14)Mo1—O7—Mo4—O12103.1 (4)
Mo4i—O6—Mo2—O1365.6 (3)Mo2i—O7—Mo4—O10179.50 (12)
Mo3—O6—Mo2—O1348.6 (3)Mo3—O7—Mo4—O1078.4 (4)
Mo4i—O6—Mo2—O7i23.24 (12)Mo2—O7—Mo4—O1075.15 (11)
Mo3—O6—Mo2—O7i90.94 (12)Mo1—O7—Mo4—O1016.30 (10)
Mo4i—O6—Mo2—O7101.06 (13)Mo2i—O7—Mo4—O6i18.44 (10)
Mo3—O6—Mo2—O713.13 (10)Mo3—O7—Mo4—O6i120.6 (4)
Mo3—O6—Mo2—Mo4i114.19 (18)Mo2—O7—Mo4—O6i85.91 (11)
Mo4i—O6—Mo2—Mo3i24.83 (16)Mo1—O7—Mo4—O6i177.37 (11)
Mo3—O6—Mo2—Mo3i89.36 (11)Mo2i—O7—Mo4—O1394.20 (10)
Mo3i—O13—Mo2—O875.02 (15)Mo3—O7—Mo4—O13163.7 (5)
Mo4—O13—Mo2—O8172.19 (13)Mo2—O7—Mo4—O1310.15 (8)
Mo3i—O13—Mo2—O9179.12 (13)Mo1—O7—Mo4—O13101.60 (9)
Mo4—O13—Mo2—O966.32 (14)Mo3—O7—Mo4—Mo2i102.1 (5)
Mo3i—O13—Mo2—O664.9 (3)Mo2—O7—Mo4—Mo2i104.35 (11)
Mo4—O13—Mo2—O647.9 (3)Mo1—O7—Mo4—Mo2i164.19 (12)
Mo3i—O13—Mo2—O7i22.44 (12)Mo2—O13—Mo4—O1138.2 (5)
Mo4—O13—Mo2—O7i90.36 (12)Mo3i—O13—Mo4—O1178.2 (5)
Mo3i—O13—Mo2—O7100.24 (12)Mo2—O13—Mo4—O12167.31 (15)
Mo4—O13—Mo2—O712.55 (10)Mo3i—O13—Mo4—O1276.32 (14)
Mo3i—O13—Mo2—Mo4i23.85 (15)Mo2—O13—Mo4—O1065.99 (13)
Mo4—O13—Mo2—Mo4i88.95 (11)Mo3i—O13—Mo4—O10177.64 (12)
Mo4—O13—Mo2—Mo3i112.80 (16)Mo2—O13—Mo4—O6i91.00 (13)
Mo2i—O7—Mo2—O9179.05 (13)Mo3i—O13—Mo4—O6i25.37 (11)
Mo3—O7—Mo2—O986.59 (12)Mo2—O13—Mo4—O713.19 (11)
Mo4—O7—Mo2—O985.91 (12)Mo3i—O13—Mo4—O7103.18 (11)
Mo1—O7—Mo2—O90.12 (10)Mo2—O13—Mo4—Mo2i55.58 (10)
Mo2i—O7—Mo2—O681.79 (12)Mo3i—O13—Mo4—Mo2i60.79 (8)
Mo3—O7—Mo2—O612.57 (10)N2—C3—N1—C10.0 (6)
Mo4—O7—Mo2—O6174.94 (12)C4—C3—N1—C1178.8 (6)
Mo1—O7—Mo2—O699.04 (10)N2—C3—N1—C5177.8 (4)
Mo2i—O7—Mo2—O1381.18 (12)C4—C3—N1—C53.4 (8)
Mo3—O7—Mo2—O13175.54 (12)C2—C1—N1—C30.4 (6)
Mo4—O7—Mo2—O1311.97 (10)C2—C1—N1—C5178.2 (4)
Mo1—O7—Mo2—O1397.99 (10)C6—C5—N1—C389.7 (6)
Mo2i—O7—Mo2—O7i0.0C6—C5—N1—C187.7 (6)
Mo3—O7—Mo2—O7i94.36 (11)N1—C3—N2—C20.4 (6)
Mo4—O7—Mo2—O7i93.14 (11)C4—C3—N2—C2178.5 (6)
Mo1—O7—Mo2—O7i179.17 (14)C1—C2—N2—C30.6 (6)
Mo2i—O7—Mo2—Mo4i46.75 (8)N4—C11—N3—C90.1 (5)
Mo3—O7—Mo2—Mo4i47.61 (7)C12—C11—N3—C9179.8 (5)
Mo4—O7—Mo2—Mo4i139.89 (7)N4—C11—N3—C8173.5 (4)
Mo1—O7—Mo2—Mo4i134.08 (6)C12—C11—N3—C86.6 (7)
Mo2i—O7—Mo2—Mo3i45.79 (8)C10—C9—N3—C110.4 (5)
Mo3—O7—Mo2—Mo3i140.15 (7)C10—C9—N3—C8173.1 (4)
Mo4—O7—Mo2—Mo3i47.35 (7)C7—C8—N3—C11138.3 (5)
Mo1—O7—Mo2—Mo3i133.38 (6)C7—C8—N3—C949.2 (6)
Mo1—O5—Mo3—O372.93 (18)N3—C11—N4—C100.2 (5)
Mo1—O5—Mo3—O4179.01 (15)C12—C11—N4—C10179.9 (4)
Mo1—O5—Mo3—O13i50.0 (3)C9—C10—N4—C110.4 (5)
Mo1—O5—Mo3—O720.83 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O9ii0.87 (3)2.37 (4)3.031 (5)134 (4)
N2—H2N···O10ii0.87 (3)2.20 (2)3.001 (5)153 (5)
N4—H4N···O12iii0.86 (3)2.39 (4)3.052 (5)134 (4)
N4—H4N···O4iv0.86 (3)2.12 (3)2.873 (4)146 (5)
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y1, z+1; (iv) x, y, z+2.

Experimental details

Crystal data
Chemical formula(C12H20N4)2[Mo8O26]
Mr1624.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.5680 (3), 11.4890 (5), 11.5600 (8)
α, β, γ (°)60.777 (1), 68.155 (1), 70.400 (1)
V3)1116.29 (10)
Z1
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.27 × 0.26 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.49, 0.63
No. of measured, independent and
observed [I > 2σ(I)] reflections
6962, 5123, 3776
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.04
No. of reflections5123
No. of parameters306
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.71

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O9i0.87 (3)2.37 (4)3.031 (5)134 (4)
N2—H2N···O10i0.87 (3)2.20 (2)3.001 (5)153 (5)
N4—H4N···O12ii0.86 (3)2.39 (4)3.052 (5)134 (4)
N4—H4N···O4iii0.86 (3)2.12 (3)2.873 (4)146 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z+1; (iii) x, y, z+2.
 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. 36, 873–876.  CrossRef CAS Google Scholar
First citationKozhevnikov, I. V. (1998). Chem. Rev. 98, 171–198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Liu, J., Fu, Y.-M. & Su, Z.-M. (2008). Dalton Trans. pp. 2015–2025.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). Inorg. Chem. 46, 8283–8290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664–666.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds