organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-iodo­aniline

aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, and bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
*Correspondence e-mail: yhxu@bjtu.edu.cn

(Received 30 September 2008; accepted 3 November 2008; online 8 November 2008)

The title dihaloaniline, C6H5ClIN, shows no significant hydrogen bonds nor the commonly observed I⋯I inter­actions in the crystal structure, although an amino group and an I atom are available for such contacts. The crystal structure is stabilized by weak inter­actions involving the amine functionality as donor group and N or halogen atoms as acceptors.

Related literature

The title compound was first synthesized 90 years ago (Dains et al., 1918[Dains, F. B., Vaughan, T. H. & Janney, W. M. (1918). J. Am. Chem. Soc. 40, 930-936.]). For structures of halogenated anilines, see: Cox (2001[Cox, P. J. (2001). Acta Cryst. E57, o1203-o1205.]); Dey et al. (2003[Dey, A., Jetti, R. K. R., Boese, R. & Desiraju, G. R. (2003). CrystEngComm, 5, 248-252.]); Dou et al. (1993[Dou, S. Q., Weiden, N. & Weiss, A. (1993). Acta Chim. Hung. 130, 497-522.]); Fukuyo et al. (1982[Fukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640-643.]); Goubitz et al. (2001[Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176-181.]); Parkin et al. (2005[Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.]); Sakurai et al. (1963[Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354-363.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5ClIN

  • Mr = 253.46

  • Orthorhombic, P 21 21 21

  • a = 5.6277 (2) Å

  • b = 8.7859 (3) Å

  • c = 14.9217 (5) Å

  • V = 737.79 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.61 mm−1

  • T = 90.0 (2) K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.424, Tmax = 0.630

  • 5635 measured reflections

  • 1696 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.046

  • S = 1.14

  • 1696 reflections

  • 89 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.76 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 681 Friedel pairs

  • Flack parameter: −0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N1i 0.82 (3) 2.61 (3) 3.359 (4) 153 (4)
N1—H1N⋯Cl1ii 0.82 (3) 2.94 (4) 3.515 (4) 129 (4)
N1—H2N⋯I1iii 0.81 (3) 3.16 (3) 3.807 (4) 139 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Although structurally simple and readily available, few crystal structures of dihaloanilines have been measured. A total of 10 structures were found in the 2007 CSD; the refcodes are CAJWEQ, CAJWEQ01 (Goubitz et al., 2001), DCHLAN, DCHLAN01 (Sakurai et al., 1963), KUMTER (Cox, 2001), WEMDAT, WEMDEX, WEMDIB, WEMDOH, WEMDUN (Dou et al., 1993). 2-Chloro-4-iodoaniline, (I), an aniline with two different halogen substituents, was first synthesized 90 years ago (Dains et al., 1918), yet its crystal structure is reported here for the first time.

The asymmetric unit contains one molecule (Fig. 1). The N atom is not coplanar with the aromatic ring; H atoms of the amino group are also out of the halogenated benzene ring, but in the opposite direction to that of the N atom. So, the C(Ar)NH2 group has a pyramidal shape. This is similar to the structure of aniline at 252 K (Fukuyo et al., 1982), 2-iodoaniline at 100 K (Parkin et al., 2005) and 4-iodoaniline at 203 K (Dey et al., 2003).

Despite the presence of amino, chloro and iodo groups, no classic interactions associated with them, such as hydrogen bonds, Cl···Cl, or I···I contacts were observed in the crystal structure of (I). Instead, weak interactions such as N—H···N, N—H···I, and N—H···Cl are found to provide stability to the crystal (Fig. 2).

Related literature top

The title compound was first synthesized 90 years ago (Dains et al., 1918). For structures of halogenated anilines, see: Cox (2001); Dey et al. (2003); Dou et al. (1993); Fukuyo et al. (1982); Goubitz et al. (2001); Parkin et al. (2005); Sakurai et al. (1963).

Experimental top

The compound was purchased from TCI America Laboratory Chemicals as colorless block crystals suitable for single-crystal X-ray diffraction measurement.

Refinement top

H atoms were found in a difference map and those on the aromatic ring subsequently placed in idealized positions with C—H distances of 0.95 Å and isotropic displacement parameters equal to 1.2Ueq of the carrier C atom. Amine H atoms H1N and H2N were refined freely but were restrained to converge to the same N—H bond lengths, with a standard deviation of 0.02 Å. Isotropic displacement parameters for H1N and H2N were computed as 1.5Ueq(N1)

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram of (I) down the a axis.
2-Chloro-4-iodoaniline top
Crystal data top
C6H5ClINF(000) = 472
Mr = 253.46Dx = 2.282 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1019 reflections
a = 5.6277 (2) Åθ = 1.0–27.5°
b = 8.7859 (3) ŵ = 4.61 mm1
c = 14.9217 (5) ÅT = 90 K
V = 737.79 (4) Å3Rounded block, colourless
Z = 40.22 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1696 independent reflections
Radiation source: fine-focus sealed tube1587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scans at fixed χ = 55°h = 77
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.424, Tmax = 0.630l = 1919
5635 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.P)2 + 0.4678P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.14Δρmax = 1.18 e Å3
1696 reflectionsΔρmin = 0.76 e Å3
89 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0021 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 681 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (3)
Crystal data top
C6H5ClINV = 737.79 (4) Å3
Mr = 253.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6277 (2) ŵ = 4.61 mm1
b = 8.7859 (3) ÅT = 90 K
c = 14.9217 (5) Å0.22 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1696 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1587 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.630Rint = 0.033
5635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046Δρmax = 1.18 e Å3
S = 1.14Δρmin = 0.76 e Å3
1696 reflectionsAbsolute structure: Flack (1983), 681 Friedel pairs
89 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.48590 (4)0.17882 (2)0.730162 (15)0.01928 (9)
Cl10.46148 (17)0.51349 (10)0.40305 (6)0.0194 (2)
N10.9067 (6)0.6647 (5)0.4646 (2)0.0188 (8)
H1N1.048 (5)0.679 (5)0.474 (3)0.028*
H2N0.882 (7)0.656 (5)0.411 (2)0.028*
C10.6370 (6)0.3328 (4)0.6386 (2)0.0133 (7)
C20.5194 (7)0.3639 (3)0.5594 (2)0.0138 (7)
H20.37640.31210.54480.017*
C30.6128 (6)0.4711 (4)0.5018 (2)0.0145 (8)
C40.8253 (6)0.5480 (4)0.5199 (3)0.0152 (8)
C50.9422 (6)0.5117 (4)0.5999 (2)0.0166 (8)
H51.08750.56110.61420.020*
C60.8494 (7)0.4049 (4)0.6588 (3)0.0163 (8)
H60.93120.38120.71270.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02354 (13)0.01764 (13)0.01666 (14)0.00271 (12)0.00379 (13)0.00106 (9)
Cl10.0189 (5)0.0231 (4)0.0163 (4)0.0003 (4)0.0036 (4)0.0007 (3)
N10.0163 (16)0.0192 (18)0.0208 (18)0.0046 (15)0.0035 (15)0.0025 (15)
C10.0136 (16)0.0101 (17)0.0161 (19)0.0001 (15)0.0027 (15)0.0029 (16)
C20.0142 (18)0.0107 (15)0.0165 (17)0.0005 (16)0.003 (2)0.0046 (13)
C30.0134 (18)0.0133 (17)0.0169 (19)0.0020 (16)0.0006 (16)0.0017 (16)
C40.0121 (18)0.0129 (18)0.020 (2)0.0043 (15)0.0034 (16)0.0031 (17)
C50.0096 (18)0.0154 (17)0.025 (2)0.0007 (14)0.0002 (16)0.0053 (15)
C60.0172 (19)0.0182 (19)0.0133 (18)0.0019 (16)0.0003 (16)0.0034 (16)
Geometric parameters (Å, º) top
I1—C12.103 (4)C2—C31.379 (5)
Cl1—C31.742 (4)C2—H20.9500
N1—C41.394 (5)C3—C41.400 (5)
N1—H1N0.82 (3)C4—C51.400 (5)
N1—H2N0.81 (3)C5—C61.387 (5)
C1—C21.382 (5)C5—H50.9500
C1—C61.386 (5)C6—H60.9500
C4—N1—H1N110 (3)C4—C3—Cl1118.6 (3)
C4—N1—H2N117 (3)N1—C4—C5121.2 (3)
H1N—N1—H2N110 (5)N1—C4—C3121.4 (3)
C2—C1—C6120.6 (3)C5—C4—C3117.2 (3)
C2—C1—I1119.3 (3)C6—C5—C4121.1 (3)
C6—C1—I1120.1 (3)C6—C5—H5119.4
C3—C2—C1119.0 (3)C4—C5—H5119.4
C3—C2—H2120.5C1—C6—C5119.7 (3)
C1—C2—H2120.5C1—C6—H6120.1
C2—C3—C4122.3 (3)C5—C6—H6120.1
C2—C3—Cl1119.1 (3)
C6—C1—C2—C31.9 (5)Cl1—C3—C4—C5179.8 (3)
I1—C1—C2—C3176.5 (2)N1—C4—C5—C6174.2 (3)
C1—C2—C3—C41.2 (5)C3—C4—C5—C60.5 (5)
C1—C2—C3—Cl1178.6 (3)C2—C1—C6—C51.5 (5)
C2—C3—C4—N1174.7 (3)I1—C1—C6—C5176.9 (2)
Cl1—C3—C4—N15.1 (5)C4—C5—C6—C10.3 (5)
C2—C3—C4—C50.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N1i0.82 (3)2.61 (3)3.359 (4)153 (4)
N1—H1N···Cl1ii0.82 (3)2.94 (4)3.515 (4)129 (4)
N1—H2N···I1iii0.81 (3)3.16 (3)3.807 (4)139 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5ClIN
Mr253.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)5.6277 (2), 8.7859 (3), 14.9217 (5)
V3)737.79 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.61
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.424, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
5635, 1696, 1587
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.046, 1.14
No. of reflections1696
No. of parameters89
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.18, 0.76
Absolute structureFlack (1983), 681 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: COLLECT (Nonius, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N1i0.82 (3)2.61 (3)3.359 (4)153 (4)
N1—H1N···Cl1ii0.82 (3)2.94 (4)3.515 (4)129 (4)
N1—H2N···I1iii0.81 (3)3.16 (3)3.807 (4)139 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x+3/2, y+1, z1/2.
 

Acknowledgements

Y-HX thanks Dr Sihui Long for helpful discussions and invaluable suggestions.

References

First citationCox, P. J. (2001). Acta Cryst. E57, o1203–o1205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDains, F. B., Vaughan, T. H. & Janney, W. M. (1918). J. Am. Chem. Soc. 40, 930–936.  CrossRef CAS Google Scholar
First citationDey, A., Jetti, R. K. R., Boese, R. & Desiraju, G. R. (2003). CrystEngComm, 5, 248–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationDou, S. Q., Weiden, N. & Weiss, A. (1993). Acta Chim. Hung. 130, 497–522.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640–643.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087–o1089.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354–363.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds