organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl­ene bis­­(di­thio­benzoate)

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and cDepartment of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: yhlo@ttu.edu.tw

(Received 14 October 2008; accepted 11 November 2008; online 13 November 2008)

In the title compound, C15H12S4, two phenyl­dithio­carboxyl­ate units are linked through a methyl­ene C atom on a twofold rotation axis. The central S—CH2—S angle of 116.9 (5)° is significantly larger than the ideal tetra­hedral value. The dihedral angle formed by the two phenyl rings is 68.2 (1)°. The refined Flack parameter of 0.2 (3) does not permit unambiguous determination of the absolute structure.

Related literature

For related structures, see: Shrivastav et al. (2002[Shrivastav, A., Singh, N. K. & Srivastava, G. (2002). Bioorg. Med. Chem. 10, 2693-2704.]); Gonzalez-Castro et al. (2000[Gonzalez-Castro, A., Gutierrez-Perez, R., Penieres-Carrillo, G., Diaz-Torres, E., Toscano, R. A., Moya-Cabrera, M., Cabrera-Ortiz, C. & Alvarez-Toledano, C. (2000). Heteroatom. Chem. 11, 120-128.]); Quintanilla et al. (2005[Quintanilla, M. G., Guerra, E., Dotor, J., Maresova, J., Barba, F. & Martin, A. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 1691-1699.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12S4

  • Mr = 320.49

  • Orthorhombic, P 21 21 2

  • a = 11.5800 (3) Å

  • b = 14.6440 (11) Å

  • c = 4.2710 (7) Å

  • V = 724.27 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 200 (2) K

  • 0.11 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.933, Tmax = 0.987

  • 5256 measured reflections

  • 1317 independent reflections

  • 931 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.157

  • S = 1.13

  • 1317 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 505 Friedel pairs

  • Flack parameter: 0.2 (3)

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During studies on the reactivity of the RuS2 complex {Ru(Tp)(PPh3)[S2CC6H5]}, (hydridotripyrazol-1-ylborato-κ3N2,N2',N2'')(phenyldithiocarboxylato-κ2S,S')(triphenylphosphine-κP)ruthenium, with CH3CN in dichloromethane, we unexpectedly obtained crystals of the title compound. It consists of two phenyldithiocarboxylate units bridged by a methylene group. The 1H NMR spectrum in CDCl3 shows one singlet at 5.31 ppm, assignable to SCH2S. The EI mass spectrum shows the molecular ion [C15H12S4]+ with the characteristic isotopic distribution patterns. In the crystal, the C2—S2 bond length of 1.643 (6) Å is slightly longer than expected for a C=S double bond (ca 1.61 Å), while the C2—S1 and C1—S1 distances of 1.743 (6) and 1.794 (5) Å, respectively, are clearly single bonds. The S—C—S angle of 116.9 (5)° is larger than the ideal tetrahedral value, probably due to repulsion between the CS2 groups.

Related literature top

For related structures, see: Shrivastav et al. (2002); Gonzalez-Castro et al. (2000); Quintanilla et al. (2005).

Experimental top

The title compound was obtained unexpectedly during studies on the reactivity of {Ru(Tp)(PPh3)[S2CC6H5]} with CH3CN in dichloromethane. To a solution of {Ru(Tp)(PPh3)[S2CC6H5]} (2.00 g, 2.73 mmol) in CH2Cl2 (20 ml), an excess of CH3CN (2 ml) was added. The resulting yellow solution was heated to reflux for 3 h and the yellow precipitate obtained was filtered and washed with methanol and water to remove excess reagents. The compound was then dried under vacuum to give 0.83 g (91% yield). Crystals for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–hexane.

Elemental analysis calculated: C, 56.21; H, 3.77%; found: C, 56.19; H, 3.69%. 1H NMR (CDCl3,303 K, ppm): δ 7.98–7.35 (m, 10H, Ph), 5.31 (s, 2H, CH2). MS (m/z): 320.5 (M+).

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.96 Å and Uiso(H) = 1.2Ueq(C). The refined Flack parameter of 0.2 (3) does not permit unambiguous determination of the absolute structure.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. Non-labelled atoms are related to labelled atoms by the symmetry code 1-x, 2-y, z.
Methylene bis(dithiobenzoate) top
Crystal data top
C15H12S4F(000) = 332
Mr = 320.49Dx = 1.470 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 5256 reflections
a = 11.5800 (3) Åθ = 2.0–25.4°
b = 14.6440 (11) ŵ = 0.64 mm1
c = 4.2710 (7) ÅT = 200 K
V = 724.27 (13) Å3Plate, yellow
Z = 20.11 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1317 independent reflections
Radiation source: fine-focus sealed tube931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1313
Tmin = 0.933, Tmax = 0.987k = 1717
5256 measured reflectionsl = 54
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0733P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1317 reflectionsΔρmax = 0.37 e Å3
87 parametersΔρmin = 0.46 e Å3
0 restraintsAbsolute structure: Flack (1983), 505 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (3)
Crystal data top
C15H12S4V = 724.27 (13) Å3
Mr = 320.49Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.5800 (3) ŵ = 0.64 mm1
b = 14.6440 (11) ÅT = 200 K
c = 4.2710 (7) Å0.11 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1317 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
931 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.987Rint = 0.096
5256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.157Δρmax = 0.37 e Å3
S = 1.13Δρmin = 0.46 e Å3
1317 reflectionsAbsolute structure: Flack (1983), 505 Friedel pairs
87 parametersAbsolute structure parameter: 0.2 (3)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47264 (14)0.89784 (9)0.5726 (3)0.0446 (5)
S20.72612 (15)0.92562 (10)0.5091 (5)0.0613 (6)
C10.50001.00000.792 (2)0.049 (2)
H1A0.43461.01090.92530.058*
C20.6098 (5)0.8635 (4)0.4525 (14)0.0437 (15)
C30.6104 (5)0.7734 (4)0.2900 (15)0.0381 (14)
C40.7071 (5)0.7447 (4)0.1238 (15)0.0480 (17)
H4A0.77330.78280.11470.058*
C50.7082 (6)0.6617 (4)0.0279 (16)0.0572 (18)
H5A0.77490.64280.13970.069*
C60.6127 (6)0.6064 (4)0.0173 (15)0.0562 (18)
H6A0.61360.54910.12110.067*
C70.5161 (6)0.6336 (4)0.1422 (16)0.0600 (19)
H7A0.45030.59490.14920.072*
C80.5140 (6)0.7159 (4)0.2913 (15)0.0499 (17)
H8A0.44590.73450.39770.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0456 (9)0.0410 (8)0.0472 (9)0.0042 (7)0.0029 (7)0.0005 (7)
S20.0472 (10)0.0568 (9)0.0800 (14)0.0132 (7)0.0145 (9)0.0109 (10)
C10.063 (7)0.043 (5)0.039 (5)0.008 (4)0.0000.000
C20.042 (4)0.048 (3)0.041 (3)0.003 (2)0.012 (3)0.017 (3)
C30.035 (3)0.035 (3)0.044 (4)0.001 (3)0.000 (3)0.016 (3)
C40.038 (4)0.058 (4)0.048 (4)0.002 (3)0.002 (3)0.018 (3)
C50.055 (4)0.062 (4)0.054 (4)0.019 (3)0.016 (4)0.011 (4)
C60.068 (5)0.039 (3)0.062 (4)0.013 (3)0.012 (4)0.001 (4)
C70.057 (5)0.046 (3)0.077 (5)0.001 (3)0.017 (4)0.005 (3)
C80.044 (4)0.042 (3)0.064 (4)0.003 (3)0.008 (4)0.001 (3)
Geometric parameters (Å, º) top
S1—C21.743 (6)C4—H4A0.950
S1—C11.794 (5)C5—C61.370 (9)
S2—C21.643 (6)C5—H5A0.950
C1—S1i1.794 (5)C6—C71.369 (8)
C1—H1A0.960C6—H6A0.950
C2—C31.491 (8)C7—C81.364 (8)
C3—C41.391 (8)C7—H7A0.950
C3—C81.399 (8)C8—H8A0.950
C4—C51.377 (9)
C2—S1—C1103.5 (2)C6—C5—C4119.9 (6)
S1—C1—S1i116.9 (5)C6—C5—H5A120.1
S1—C1—H1A108.0C4—C5—H5A120.1
S1i—C1—H1A108.0C7—C6—C5120.3 (6)
C3—C2—S2123.6 (4)C7—C6—H6A119.9
C3—C2—S1113.4 (4)C5—C6—H6A119.9
S2—C2—S1123.0 (4)C8—C7—C6120.2 (7)
C4—C3—C8117.5 (6)C8—C7—H7A119.9
C4—C3—C2120.6 (5)C6—C7—H7A119.9
C8—C3—C2121.8 (5)C7—C8—C3121.1 (6)
C5—C4—C3121.0 (6)C7—C8—H8A119.5
C5—C4—H4A119.5C3—C8—H8A119.5
C3—C4—H4A119.5
C2—S1—C1—S1i78.0 (2)C2—C3—C4—C5179.7 (5)
C1—S1—C2—C3174.1 (4)C3—C4—C5—C60.3 (9)
C1—S1—C2—S26.7 (5)C4—C5—C6—C70.3 (10)
S2—C2—C3—C412.4 (8)C5—C6—C7—C80.2 (10)
S1—C2—C3—C4166.7 (5)C6—C7—C8—C31.3 (10)
S2—C2—C3—C8169.3 (5)C4—C3—C8—C71.8 (9)
S1—C2—C3—C811.6 (7)C2—C3—C8—C7179.8 (6)
C8—C3—C4—C51.4 (9)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H12S4
Mr320.49
Crystal system, space groupOrthorhombic, P21212
Temperature (K)200
a, b, c (Å)11.5800 (3), 14.6440 (11), 4.2710 (7)
V3)724.27 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.11 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.933, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5256, 1317, 931
Rint0.096
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.157, 1.13
No. of reflections1317
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.46
Absolute structureFlack (1983), 505 Friedel pairs
Absolute structure parameter0.2 (3)

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part by the project of specific research fields in Tatung University, Taiwan (B96-C07-081), and the project of specific research fields in Chung Yuan Christian University, Taiwan (CYCU-97-CR-CH).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonzalez-Castro, A., Gutierrez-Perez, R., Penieres-Carrillo, G., Diaz-Torres, E., Toscano, R. A., Moya-Cabrera, M., Cabrera-Ortiz, C. & Alvarez-Toledano, C. (2000). Heteroatom. Chem. 11, 120–128.  CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuintanilla, M. G., Guerra, E., Dotor, J., Maresova, J., Barba, F. & Martin, A. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 1691–1699.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrivastav, A., Singh, N. K. & Srivastava, G. (2002). Bioorg. Med. Chem. 10, 2693–2704.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds