metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ3-5,6-di­carb­oxy­bi­cyclo­[2.2.2]oct-7-ene-2,3-di­carboxyl­ato)(1,10-phenanthroline)copper(II)] monohydrate]

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: yunyuliu888@yahoo.com.cn

(Received 13 November 2008; accepted 15 November 2008; online 22 November 2008)

In the title compound, {[Cu(C12H10O8)(C12H8N2)]·H2O}n, the CuII ion is five-coordinated by two N atoms from one phenanthroline ligand and three O atoms from three different H2L2− anions (H4L is bicyclo­[2.2.2]oct-7-ene-2,3,5,6-tetra­carboxylic acid) in a distorted square-pyramidal geometry. Each H2L2− ion bridges three CuII atoms to form a zigzag sheet parallel to the ab plane. The crystal structure is consolidated by O—H⋯O hydrogen bonds.

Related literature

For general background, see: Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H10O8)(C12H8N2)]·H2O

  • Mr = 543.96

  • Monoclinic, P 21

  • a = 6.5900 (4) Å

  • b = 15.1650 (8) Å

  • c = 10.7490 (6) Å

  • β = 95.244 (9)°

  • V = 1069.73 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 (2) K

  • 0.33 × 0.21 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.696, Tmax = 0.803

  • 6580 measured reflections

  • 4555 independent reflections

  • 4343 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.04

  • 4555 reflections

  • 333 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1914 Friedel pairs

  • Flack parameter: 0.008 (8)

Table 1
Selected bond lengths (Å)

N1—Cu1 2.0072 (17)
N2—Cu1 2.0119 (19)
O2—Cu1 1.9640 (15)
Cu1—O3i 1.9355 (15)
Cu1—O7ii 2.3398 (18)
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1W 0.82 1.84 2.567 (2) 148
O8—H8⋯O2iii 0.82 1.79 2.594 (2) 166
O1W—HW11⋯O4iv 0.82 (3) 1.97 (3) 2.777 (3) 167 (3)
O1W—HW12⋯O1v 0.82 (2) 2.05 (3) 2.763 (3) 145 (4)
Symmetry codes: (iii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iv) x, y, z+1; (v) x+1, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination polymers based on poly(carboxylic acids) have been investigated in the area of solid state and material science (Yang et al., 2008). We selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H4L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a new coordination polymer, [Cu(phen)(H2L)].H2O, which is reported here.

In the title compound, each CuII atom is five-coordinated by two N atoms from one phen ligand, and three O atoms from three different H2L2- anions in a distorted square-pyramidal geometry (Fig. 1 and Table 1). Each H2L2- bridges three CuII atoms to form a two-dimensional layer structure (Fig. 2). The O–H···O hydrogen bonds (Table 2) further consolidate the crystal structure.

Related literature top

For general background, see: Yang et al. (2008).

Experimental top

A mixture of H4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and CuCl2.2H2O (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20-ml Teflon-lined autoclave. The mixture was heated at 373 K for 7 d and then the autoclave was slowly cooled to room temperature. The grown single crystals were collected, washed with deionized water and dried.

Refinement top

H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x - 1, y, z; (ii) 2 - x, y - 1/2, 2 - z.
[Figure 2] Fig. 2. View of a zigzag sheet structure in the title compound.
Poly[[(µ3-5,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,3-dicarboxylato)(1,10- phenanthroline)copper(II)] monohydrate] top
Crystal data top
[Cu(C12H10O8)(C12H8N2)]·H2OF(000) = 558
Mr = 543.96Dx = 1.689 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 4555 reflections
a = 6.5900 (4) Åθ = 1.1–28.4°
b = 15.1650 (8) ŵ = 1.08 mm1
c = 10.7490 (6) ÅT = 293 K
β = 95.244 (9)°Block, blue
V = 1069.73 (10) Å30.33 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
4555 independent reflections
Radiation source: fine-focus sealed tube4343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.696, Tmax = 0.803k = 1917
6580 measured reflectionsl = 614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4555 reflectionsΔρmax = 0.31 e Å3
333 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), 1914 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (8)
Crystal data top
[Cu(C12H10O8)(C12H8N2)]·H2OV = 1069.73 (10) Å3
Mr = 543.96Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5900 (4) ŵ = 1.08 mm1
b = 15.1650 (8) ÅT = 293 K
c = 10.7490 (6) Å0.33 × 0.21 × 0.20 mm
β = 95.244 (9)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4343 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.803Rint = 0.022
6580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.31 e Å3
S = 1.04Δρmin = 0.37 e Å3
4555 reflectionsAbsolute structure: Flack (1983), 1914 Friedel pairs
333 parametersAbsolute structure parameter: 0.008 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8692 (4)0.81993 (17)0.5050 (2)0.0327 (5)
H10.95360.84450.57000.039*
C20.9222 (4)0.82867 (19)0.3826 (2)0.0382 (6)
H21.04080.85830.36690.046*
C30.7992 (4)0.79351 (17)0.2862 (2)0.0362 (6)
H30.83410.79900.20470.043*
C40.6199 (3)0.74901 (17)0.31010 (18)0.0285 (5)
C50.4749 (4)0.71054 (18)0.2161 (2)0.0352 (6)
H5A0.49720.71560.13220.042*
C60.3084 (4)0.66765 (18)0.2479 (2)0.0361 (6)
H60.21860.64340.18530.043*
C70.2660 (4)0.65841 (16)0.3763 (2)0.0291 (5)
C80.1009 (4)0.61105 (18)0.4178 (2)0.0364 (6)
H8B0.00830.58280.36060.044*
C90.0779 (4)0.60707 (19)0.5428 (2)0.0377 (6)
H90.03010.57580.57110.045*
C100.2174 (4)0.65023 (17)0.6279 (2)0.0329 (5)
H100.19950.64730.71270.039*
C110.4003 (3)0.69806 (15)0.46831 (19)0.0240 (4)
C120.5789 (3)0.74318 (14)0.43543 (18)0.0237 (5)
C131.0048 (3)0.90548 (13)0.94151 (18)0.0192 (4)
H130.92890.88141.00800.023*
C141.0387 (3)1.00356 (15)0.97408 (18)0.0223 (4)
H140.91591.03820.94970.027*
C151.0971 (3)1.00950 (14)1.11723 (18)0.0220 (4)
H150.97820.99191.15980.026*
C161.2682 (3)0.94109 (14)1.14952 (18)0.0211 (4)
H161.19930.88731.17360.025*
C171.3679 (3)0.91758 (15)1.02845 (19)0.0229 (4)
H171.49900.88791.04790.027*
C181.2122 (3)0.85576 (14)0.95247 (18)0.0203 (4)
H181.19780.80141.00020.024*
C191.3913 (3)0.99816 (16)0.94838 (19)0.0288 (5)
H191.51661.01680.92460.035*
C201.2195 (4)1.03987 (15)0.91496 (19)0.0268 (5)
H201.21081.08730.86000.032*
C210.8703 (3)0.88961 (15)0.82048 (19)0.0208 (4)
C221.2984 (3)0.83259 (15)0.82983 (19)0.0237 (4)
C231.4200 (4)0.96369 (15)1.2593 (2)0.0265 (5)
C241.1515 (3)1.10347 (15)1.1550 (2)0.0240 (5)
N10.7020 (3)0.77771 (12)0.53121 (15)0.0253 (4)
N20.3738 (3)0.69509 (13)0.59172 (16)0.0251 (4)
O10.7941 (3)0.95074 (11)0.75885 (15)0.0331 (4)
O20.8349 (2)0.80701 (10)0.79532 (13)0.0256 (3)
O1W1.4570 (4)0.98510 (18)1.59374 (17)0.0537 (6)
O31.4401 (2)0.77476 (12)0.84210 (14)0.0323 (4)
O41.2381 (2)0.86940 (12)0.73066 (14)0.0323 (4)
O51.3290 (3)0.95633 (14)1.36461 (15)0.0406 (4)
H51.41050.96851.42440.061*
O61.5975 (3)0.97879 (13)1.25429 (17)0.0402 (4)
O71.2819 (3)1.12253 (12)1.23587 (16)0.0358 (4)
O81.0345 (3)1.16299 (13)1.09436 (17)0.0443 (5)
H81.07031.21251.11810.066*
Cu10.59195 (3)0.760541 (17)0.697564 (19)0.02264 (7)
HW111.378 (5)0.952 (2)1.625 (3)0.050 (10)*
HW121.575 (4)0.969 (3)1.613 (4)0.078 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (12)0.0339 (14)0.0336 (12)0.0050 (11)0.0001 (10)0.0004 (10)
C20.0364 (14)0.0379 (15)0.0413 (13)0.0056 (12)0.0101 (11)0.0070 (11)
C30.0433 (15)0.0387 (14)0.0276 (11)0.0050 (11)0.0095 (10)0.0068 (9)
C40.0351 (11)0.0263 (13)0.0238 (9)0.0057 (11)0.0014 (8)0.0009 (9)
C50.0486 (16)0.0344 (15)0.0218 (10)0.0106 (11)0.0018 (10)0.0044 (9)
C60.0425 (15)0.0343 (14)0.0292 (11)0.0029 (12)0.0098 (10)0.0086 (10)
C70.0311 (12)0.0253 (12)0.0300 (11)0.0023 (10)0.0023 (9)0.0075 (9)
C80.0286 (12)0.0344 (14)0.0446 (14)0.0020 (11)0.0059 (10)0.0113 (10)
C90.0314 (13)0.0350 (15)0.0465 (14)0.0084 (11)0.0030 (11)0.0058 (11)
C100.0318 (13)0.0335 (14)0.0339 (12)0.0055 (11)0.0066 (10)0.0044 (10)
C110.0260 (11)0.0210 (11)0.0244 (10)0.0044 (9)0.0014 (8)0.0037 (8)
C120.0270 (10)0.0196 (13)0.0240 (9)0.0042 (8)0.0003 (8)0.0017 (7)
C130.0199 (10)0.0184 (11)0.0194 (9)0.0018 (8)0.0014 (8)0.0009 (7)
C140.0236 (11)0.0192 (10)0.0229 (10)0.0006 (9)0.0049 (8)0.0024 (8)
C150.0198 (10)0.0224 (11)0.0236 (10)0.0003 (8)0.0002 (8)0.0015 (8)
C160.0233 (10)0.0187 (10)0.0208 (9)0.0020 (8)0.0007 (8)0.0015 (7)
C170.0175 (10)0.0259 (12)0.0247 (10)0.0002 (9)0.0007 (8)0.0037 (8)
C180.0199 (10)0.0215 (11)0.0190 (9)0.0006 (8)0.0004 (7)0.0012 (7)
C190.0284 (12)0.0312 (13)0.0276 (11)0.0119 (10)0.0062 (9)0.0042 (9)
C200.0357 (12)0.0215 (11)0.0223 (10)0.0076 (10)0.0026 (9)0.0017 (8)
C210.0182 (10)0.0220 (12)0.0216 (10)0.0008 (9)0.0006 (8)0.0013 (8)
C220.0212 (10)0.0254 (12)0.0248 (10)0.0034 (8)0.0036 (8)0.0029 (8)
C230.0330 (13)0.0197 (11)0.0256 (10)0.0030 (9)0.0043 (9)0.0010 (8)
C240.0238 (11)0.0221 (12)0.0262 (11)0.0028 (9)0.0031 (9)0.0032 (8)
N10.0252 (9)0.0254 (12)0.0251 (8)0.0010 (8)0.0008 (7)0.0022 (7)
N20.0242 (9)0.0245 (10)0.0264 (9)0.0010 (8)0.0006 (7)0.0030 (7)
O10.0381 (10)0.0263 (9)0.0323 (9)0.0023 (8)0.0117 (7)0.0020 (7)
O20.0265 (8)0.0205 (8)0.0283 (7)0.0040 (7)0.0051 (6)0.0019 (6)
O1W0.0514 (14)0.0778 (17)0.0291 (9)0.0253 (13)0.0121 (9)0.0156 (10)
O30.0290 (8)0.0397 (12)0.0282 (7)0.0106 (8)0.0033 (6)0.0084 (7)
O40.0349 (9)0.0392 (10)0.0225 (7)0.0009 (8)0.0016 (6)0.0024 (7)
O50.0447 (10)0.0543 (13)0.0211 (7)0.0153 (9)0.0054 (7)0.0004 (7)
O60.0254 (9)0.0509 (13)0.0424 (10)0.0001 (8)0.0069 (7)0.0105 (8)
O70.0387 (10)0.0224 (9)0.0427 (10)0.0004 (7)0.0164 (8)0.0049 (7)
O80.0502 (11)0.0249 (10)0.0528 (11)0.0103 (9)0.0222 (9)0.0094 (8)
Cu10.02218 (12)0.02490 (13)0.02043 (10)0.00053 (12)0.00032 (8)0.00387 (11)
Geometric parameters (Å, º) top
C1—N11.326 (3)C15—C161.548 (3)
C1—C21.398 (3)C15—H150.98
C1—H10.93C16—C231.515 (3)
C2—C31.364 (4)C16—C171.552 (3)
C2—H20.93C16—H160.98
C3—C41.405 (4)C17—C191.511 (3)
C3—H30.93C17—C181.564 (3)
C4—C121.401 (3)C17—H170.98
C4—C51.448 (3)C18—C221.523 (3)
C5—C61.346 (4)C18—H180.98
C5—H5A0.93C19—C201.318 (3)
C6—C71.440 (3)C19—H190.93
C6—H60.93C20—H200.93
C7—C111.401 (3)C21—O11.220 (3)
C7—C81.410 (3)C21—O21.298 (3)
C8—C91.367 (3)C22—O41.236 (3)
C8—H8B0.93C22—O31.279 (3)
C9—C101.399 (3)C23—O61.198 (3)
C9—H90.93C23—O51.334 (3)
C10—N21.323 (3)C24—O71.200 (3)
C10—H100.93C24—O81.320 (3)
C11—N21.354 (3)N1—Cu12.0072 (17)
C11—C121.434 (3)N2—Cu12.0119 (19)
C12—N11.356 (3)O2—Cu11.9640 (15)
C13—C211.525 (3)O1W—HW110.82 (3)
C13—C141.540 (3)O1W—HW120.822 (19)
C13—C181.556 (3)O3—Cu1i1.9355 (15)
C13—H130.98O5—H50.82
C14—C201.505 (3)O7—Cu1ii2.3398 (18)
C14—C151.554 (3)O8—H80.82
C14—H140.98Cu1—O3iii1.9355 (15)
C15—C241.516 (3)Cu1—O7iv2.3398 (18)
N1—C1—C2122.0 (2)C15—C16—C17108.75 (16)
N1—C1—H1119.0C23—C16—H16105.8
C2—C1—H1119.0C15—C16—H16105.8
C3—C2—C1119.7 (2)C17—C16—H16105.8
C3—C2—H2120.2C19—C17—C16111.41 (18)
C1—C2—H2120.2C19—C17—C18106.48 (17)
C2—C3—C4120.0 (2)C16—C17—C18105.53 (16)
C2—C3—H3120.0C19—C17—H17111.1
C4—C3—H3120.0C16—C17—H17111.1
C12—C4—C3116.4 (2)C18—C17—H17111.1
C12—C4—C5118.2 (2)C22—C18—C13116.14 (16)
C3—C4—C5125.3 (2)C22—C18—C17108.15 (17)
C6—C5—C4121.3 (2)C13—C18—C17106.20 (16)
C6—C5—H5A119.4C22—C18—H18108.7
C4—C5—H5A119.4C13—C18—H18108.7
C5—C6—C7121.6 (2)C17—C18—H18108.7
C5—C6—H6119.2C20—C19—C17114.4 (2)
C7—C6—H6119.2C20—C19—H19122.8
C11—C7—C8116.8 (2)C17—C19—H19122.8
C11—C7—C6118.0 (2)C19—C20—C14113.8 (2)
C8—C7—C6125.2 (2)C19—C20—H20123.1
C9—C8—C7119.4 (2)C14—C20—H20123.1
C9—C8—H8B120.3O1—C21—O2124.26 (19)
C7—C8—H8B120.3O1—C21—C13121.4 (2)
C8—C9—C10119.8 (2)O2—C21—C13114.15 (18)
C8—C9—H9120.1O4—C22—O3124.92 (19)
C10—C9—H9120.1O4—C22—C18121.8 (2)
N2—C10—C9122.1 (2)O3—C22—C18113.28 (18)
N2—C10—H10119.0O6—C23—O5124.8 (2)
C9—C10—H10119.0O6—C23—C16125.9 (2)
N2—C11—C7123.2 (2)O5—C23—C16109.01 (19)
N2—C11—C12116.08 (19)O7—C24—O8122.7 (2)
C7—C11—C12120.70 (19)O7—C24—C15123.8 (2)
N1—C12—C4123.4 (2)O8—C24—C15113.40 (19)
N1—C12—C11116.42 (17)C1—N1—C12118.41 (18)
C4—C12—C11120.14 (19)C1—N1—Cu1128.81 (15)
C21—C13—C14114.04 (17)C12—N1—Cu1112.72 (14)
C21—C13—C18115.24 (16)C10—N2—C11118.6 (2)
C14—C13—C18110.05 (17)C10—N2—Cu1128.54 (16)
C21—C13—H13105.5C11—N2—Cu1112.83 (15)
C14—C13—H13105.5C21—O2—Cu1125.43 (14)
C18—C13—H13105.5HW11—O1W—HW12109 (4)
C20—C14—C13111.19 (17)C22—O3—Cu1i114.82 (14)
C20—C14—C15105.24 (17)C23—O5—H5109.5
C13—C14—C15107.38 (17)C24—O7—Cu1ii130.37 (16)
C20—C14—H14110.9C24—O8—H8109.5
C13—C14—H14110.9O3iii—Cu1—O289.24 (7)
C15—C14—H14110.9O3iii—Cu1—N1162.98 (7)
C24—C15—C16114.85 (17)O2—Cu1—N194.97 (7)
C24—C15—C14110.54 (18)O3iii—Cu1—N296.53 (7)
C16—C15—C14107.01 (16)O2—Cu1—N2170.11 (7)
C24—C15—H15108.1N1—Cu1—N281.84 (7)
C16—C15—H15108.1O3iii—Cu1—O7iv92.84 (7)
C14—C15—H15108.1O2—Cu1—O7iv84.71 (6)
C23—C16—C15116.02 (18)N1—Cu1—O7iv103.96 (7)
C23—C16—C17113.89 (18)N2—Cu1—O7iv86.97 (7)
N1—C1—C2—C30.4 (4)C15—C14—C20—C1957.3 (2)
C1—C2—C3—C40.2 (4)C14—C13—C21—O11.8 (3)
C2—C3—C4—C120.3 (4)C18—C13—C21—O1130.5 (2)
C2—C3—C4—C5178.6 (2)C14—C13—C21—O2177.45 (17)
C12—C4—C5—C62.2 (4)C18—C13—C21—O253.9 (2)
C3—C4—C5—C6178.8 (3)C13—C18—C22—O417.8 (3)
C4—C5—C6—C70.4 (4)C17—C18—C22—O4101.4 (2)
C5—C6—C7—C112.0 (4)C13—C18—C22—O3164.32 (18)
C5—C6—C7—C8176.8 (3)C17—C18—C22—O376.5 (2)
C11—C7—C8—C90.9 (4)C15—C16—C23—O6114.2 (3)
C6—C7—C8—C9179.8 (2)C17—C16—C23—O613.2 (3)
C7—C8—C9—C100.3 (4)C15—C16—C23—O571.4 (2)
C8—C9—C10—N20.4 (4)C17—C16—C23—O5161.24 (19)
C8—C7—C11—N22.3 (3)C16—C15—C24—O723.1 (3)
C6—C7—C11—N2178.8 (2)C14—C15—C24—O7144.3 (2)
C8—C7—C11—C12176.3 (2)C16—C15—C24—O8160.03 (19)
C6—C7—C11—C122.6 (3)C14—C15—C24—O838.8 (2)
C3—C4—C12—N10.1 (3)C2—C1—N1—C120.8 (4)
C5—C4—C12—N1179.1 (2)C2—C1—N1—Cu1177.84 (18)
C3—C4—C12—C11179.3 (2)C4—C12—N1—C10.6 (3)
C5—C4—C12—C111.6 (3)C11—C12—N1—C1179.9 (2)
N2—C11—C12—N10.2 (3)C4—C12—N1—Cu1178.13 (18)
C7—C11—C12—N1178.5 (2)C11—C12—N1—Cu12.6 (2)
N2—C11—C12—C4179.5 (2)C9—C10—N2—C110.9 (4)
C7—C11—C12—C40.8 (3)C9—C10—N2—Cu1179.39 (19)
C21—C13—C14—C2088.1 (2)C7—C11—N2—C102.3 (3)
C18—C13—C14—C2043.2 (2)C12—C11—N2—C10176.4 (2)
C21—C13—C14—C15157.29 (17)C7—C11—N2—Cu1179.00 (18)
C18—C13—C14—C1571.42 (19)C12—C11—N2—Cu12.3 (2)
C20—C14—C15—C2456.4 (2)O1—C21—O2—Cu123.2 (3)
C13—C14—C15—C24174.93 (17)C13—C21—O2—Cu1152.23 (14)
C20—C14—C15—C1669.3 (2)O4—C22—O3—Cu1i9.8 (3)
C13—C14—C15—C1649.2 (2)C18—C22—O3—Cu1i167.97 (14)
C24—C15—C16—C2326.6 (3)O8—C24—O7—Cu1ii7.8 (4)
C14—C15—C16—C23149.70 (18)C15—C24—O7—Cu1ii175.59 (14)
C24—C15—C16—C17103.3 (2)C21—O2—Cu1—O3iii77.88 (17)
C14—C15—C16—C1719.8 (2)C21—O2—Cu1—N185.60 (17)
C23—C16—C17—C1991.2 (2)C21—O2—Cu1—O7iv170.81 (17)
C15—C16—C17—C1939.8 (2)C1—N1—Cu1—O3iii94.5 (3)
C23—C16—C17—C18153.60 (18)C12—N1—Cu1—O3iii82.7 (3)
C15—C16—C17—C1875.3 (2)C1—N1—Cu1—O29.3 (2)
C21—C13—C18—C2226.2 (3)C12—N1—Cu1—O2173.52 (15)
C14—C13—C18—C22104.5 (2)C1—N1—Cu1—N2179.9 (2)
C21—C13—C18—C17146.43 (17)C12—N1—Cu1—N22.94 (15)
C14—C13—C18—C1715.8 (2)C1—N1—Cu1—O7iv95.1 (2)
C19—C17—C18—C2259.7 (2)C12—N1—Cu1—O7iv87.74 (15)
C16—C17—C18—C22178.16 (17)C10—N2—Cu1—O3iii21.4 (2)
C19—C17—C18—C1365.7 (2)C11—N2—Cu1—O3iii160.06 (15)
C16—C17—C18—C1352.9 (2)C10—N2—Cu1—N1175.7 (2)
C16—C17—C19—C2057.8 (2)C11—N2—Cu1—N12.86 (15)
C18—C17—C19—C2056.8 (2)C10—N2—Cu1—O7iv71.1 (2)
C17—C19—C20—C145.7 (3)C11—N2—Cu1—O7iv107.43 (15)
C13—C14—C20—C1958.6 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+2; (iii) x1, y, z; (iv) x+2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.842.567 (2)148
O8—H8···O2ii0.821.792.594 (2)166
O1W—HW11···O4v0.82 (3)1.97 (3)2.777 (3)167 (3)
O1W—HW12···O1vi0.82 (2)2.05 (3)2.763 (3)145 (4)
Symmetry codes: (ii) x+2, y+1/2, z+2; (v) x, y, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H10O8)(C12H8N2)]·H2O
Mr543.96
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.5900 (4), 15.1650 (8), 10.7490 (6)
β (°) 95.244 (9)
V3)1069.73 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.33 × 0.21 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.696, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
6580, 4555, 4343
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.04
No. of reflections4555
No. of parameters333
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.37
Absolute structureFlack (1983), 1914 Friedel pairs
Absolute structure parameter0.008 (8)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Cu12.0072 (17)Cu1—O3i1.9355 (15)
N2—Cu12.0119 (19)Cu1—O7ii2.3398 (18)
O2—Cu11.9640 (15)
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.842.567 (2)148
O8—H8···O2iii0.821.792.594 (2)166
O1W—HW11···O4iv0.82 (3)1.97 (3)2.777 (3)167 (3)
O1W—HW12···O1v0.82 (2)2.05 (3)2.763 (3)145 (4)
Symmetry codes: (iii) x+2, y+1/2, z+2; (iv) x, y, z+1; (v) x+1, y, z+1.
 

Acknowledgements

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant Nos. 20080305 and 20080304) for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds