organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­ethyl-N′-phenyl­acetyl­thio­urea

aChemical Engineering Institute, Northwest University for Nationalities, Lanzhou 730124, People's Republic of China
*Correspondence e-mail: xianliangchina@yahoo.com.cn

(Received 18 October 2008; accepted 29 October 2008; online 8 November 2008)

The title thio­urea mol­ecule, C13H18N2OS, adopts a folded conformation due to the steric hindrance of the two ethyl groups and the acetyl group. In the crystal structure, the acetyl O atom is not involved in hydrogen bonding, but inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background on the chemistry of thio­urea derivatives, see: Choi et al. (2008[Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522-4525.]); Jones et al. (2008[Jones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666-4669.]); Kushwaha et al. (2008[Kushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett. 62, 3931-3933.]); Su et al. (2006[Su, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745-750.]). For related structures, see: Su (2005[Su, B.-Q. (2005). Acta Cryst. E61, o3492-o3494.], 2007[Su, B. Q. (2007). J. Chem. Crystallogr. 37, 87-90.]); Xian et al. (2004[Xian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453-457.]); Xian (2008[Xian, L. (2008). Acta Cryst. E64, o1969.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2OS

  • Mr = 250.35

  • Monoclinic, P 21 /c

  • a = 11.578 (7) Å

  • b = 12.804 (8) Å

  • c = 9.176 (6) Å

  • β = 103.842 (10)°

  • V = 1320.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 (2) K

  • 0.30 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 0.944

  • 7619 measured reflections

  • 3080 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.05

  • 3080 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1′⋯S1i 0.86 2.69 3.404 (3) 141
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its derivatives attract special attention in recent years because of their broad applications, such as anion recognition, nonlinear optical material, catalysis etc., and also due to high bioactivity and good coordination ability (Choi et al., 2008; Kushwaha et al., 2008; Jones et al. 2008; Su et al., 2006). For a long time, we have being interested in the influence of non-covalent interactions related to the substituted groups on the conformations of thiourea derivatives as well as their coordination abilities. Thiourea derivatives with different substituted groups coordinate different transition metal ions providing various structures. One of the key influence factors in coordination reactions is non-covalent interaction. However, the central ion also plays and important role. Triangle conformation is commonly observed in the coordination compound of benzoylthiourea with Cu(I) (Xian et al., 2004). However, Cu6 cluster structure was also obtained (Su et al., 2005). Herewith we present the crystal structure of the title compound, (I).

The conformation and the packing diagram of (I) are shown in Figures 1 and 2, respectively. It can be seen that the title compound has a folded conformation which is similar to the structure we obtained before (CCDC No. 699688). The dihedral angle between the benzene ring and the plane O1/ N1/C7/C8 is 69.12 (6)°, and the dihedral angle between the benzene ring and the plane S1/C9/N1/N2 is 67.19 (6)°. Apparently, stereo-hindrance effect of two ethyl groups and acetyl group is the main influence factor to the folded conformation. Because of the absence of hydrogen atom on N2, the acetyl oxygen atom does not take part in hydrogen bonding interactions. This is different from the other carbonylthiourea derivatives (Su et al., 2006; Xian, 2008), in which the carbonyl oxygen atom often forms a six-membered hydrogen bonding ring. However, thiocarbonyl sulfur atom is involved in an intermolecular N—H···S hydrogen bond (Table 1), linking two molecules into centrosymmetric dimer, that was eralier observed in related structures (Su, 2007; Xian, 2008).

Related literature top

For general background on the chemistry of thiourea derivatives, see: Choi et al. (2008); Jones et al. (2008); Kushwaha et al. (2008); Su et al. (2006). For related structures, see: Su (2005, 2007); Xian et al. (2004); Xian (2008).

Experimental top

All reagents and organic solvents were of analytical reagent grade and commercially available. Phenylacetyl chloride (1.55 g) was treated with ammonium thiocyanate (1.20 g) in CH2Cl2 under solid-liquid phase transfer catalysis conditions, using 3% polyethylene glycol-400 as catalyst, to give the corresponding phenylacetyl isothiocyanate, which was reacted with diethylamine (0.73 g) to give the title compound. The solid was separated from the liquid phase by filtration, washed with CH2Cl2 and then dried in air. Colorless single crystals suitable for X-ray analysis were obtained after one week by slow evaporation of an chloroform solution. The infrared spectrum was recorded in the range of 4000–400 cm-1 on a Nicolet NEXUS 670 F T—IR spectrometer, using KBr pellets. 1H NMR spectrum was obtained on an INOVA-400 MHz superconduction spectrometer, acetoned6 was used as solvent and TMS as internal standard, and the chemical shifts are expressed as delta. Elemental analyses were carried out on a PE-2400 elemental analysis instrument. Melting point determination was performed in YRT-3 melting point instrument (Tianjin) and was uncorrected. Melting Point: 92–94 °C. Elemental analysis (%) found (calcd.): C, 62.3(60.5); H, 7.2(6.9); N, 11.2(13.6); S, 12.8(10.9). IR (KBr, cm-1): 3190 (N—H), 3079, 1711 (C=O), 1548(C=C), 1233(C=S), 1121. 1H NMR(delta, p.p.m.): 2.06 (m, 3H, CH3); 2.85 (m, 3H, CH3);3.70 (m, 6H, 3CH2); 7.22–7.38 (m, 5H, C6H5); 9.25 (s, 1H, NH).

Refinement top

All H atoms were placed in calculated positions (C–H = 0.93–0.97 Å, N–H = 0.86 Å) and refined using the riding model approximation, with Uiso(H) = 1.2 or 1.5 Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: APEX2 (Bruker, 2001) and SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
N,N-Diethyl-N'-phenylacetylthiourea top
Crystal data top
C13H18N2OSF(000) = 536
Mr = 250.35Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.578 (7) ÅCell parameters from 3844 reflections
b = 12.804 (8) Åθ = 2.4–29.9°
c = 9.176 (6) ŵ = 0.23 mm1
β = 103.842 (10)°T = 296 K
V = 1320.8 (15) Å3Block, colorless
Z = 40.30 × 0.29 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3080 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1513
Tmin = 0.934, Tmax = 0.944k = 1616
7619 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.2848P]
where P = (Fo2 + 2Fc2)/3
3080 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C13H18N2OSV = 1320.8 (15) Å3
Mr = 250.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.578 (7) ŵ = 0.23 mm1
b = 12.804 (8) ÅT = 296 K
c = 9.176 (6) Å0.30 × 0.29 × 0.25 mm
β = 103.842 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3080 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2484 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.944Rint = 0.028
7619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
3080 reflectionsΔρmin = 0.37 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61035 (14)0.09311 (14)0.9820 (2)0.0472 (4)
H10.67520.07761.06070.057*
C20.53176 (18)0.17042 (15)0.9993 (2)0.0570 (5)
H20.54410.20711.08920.068*
C30.43555 (19)0.19328 (17)0.8842 (3)0.0663 (6)
H30.38210.24490.89620.080*
C40.41832 (18)0.1398 (2)0.7515 (3)0.0716 (6)
H40.35310.15520.67330.086*
C50.49718 (16)0.06344 (17)0.7335 (2)0.0577 (5)
H50.48560.02800.64260.069*
C60.59380 (13)0.03890 (13)0.84970 (19)0.0406 (4)
C70.67692 (14)0.04934 (13)0.8329 (2)0.0457 (4)
H7A0.72490.06840.93110.055*
H7B0.63030.10990.79090.055*
C80.75749 (14)0.01928 (13)0.73300 (19)0.0426 (4)
C90.95069 (13)0.06202 (11)0.73941 (17)0.0359 (3)
C101.02328 (16)0.14815 (14)0.5447 (2)0.0488 (4)
H10A0.98930.15900.43840.059*
H10B1.07820.08990.55500.059*
C111.0909 (2)0.24531 (17)0.6105 (3)0.0755 (6)
H11A1.03700.30330.59990.113*
H11B1.15170.26010.55830.113*
H11C1.12680.23400.71490.113*
C120.81587 (16)0.18024 (14)0.5634 (2)0.0491 (4)
H12A0.83310.25450.56950.059*
H12B0.76290.16570.62840.059*
C130.75285 (19)0.15330 (19)0.4033 (2)0.0675 (6)
H13A0.79900.17810.33630.101*
H13B0.67590.18580.37880.101*
H13C0.74380.07890.39350.101*
N10.85660 (11)0.03650 (10)0.80451 (15)0.0398 (3)
H1'0.86100.05700.89490.048*
N20.92772 (11)0.12212 (10)0.61873 (14)0.0387 (3)
O10.73627 (12)0.04082 (12)0.60141 (15)0.0640 (4)
S11.08598 (3)0.01581 (4)0.82130 (5)0.04902 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (8)0.0537 (9)0.0528 (10)0.0047 (7)0.0107 (7)0.0001 (8)
C20.0569 (11)0.0526 (10)0.0681 (12)0.0026 (8)0.0276 (9)0.0033 (9)
C30.0603 (12)0.0608 (11)0.0887 (16)0.0197 (10)0.0394 (11)0.0248 (11)
C40.0507 (11)0.0962 (16)0.0667 (13)0.0215 (11)0.0120 (10)0.0285 (12)
C50.0466 (10)0.0793 (13)0.0460 (10)0.0026 (9)0.0088 (8)0.0047 (9)
C60.0312 (7)0.0456 (8)0.0473 (9)0.0053 (6)0.0135 (6)0.0047 (7)
C70.0391 (8)0.0452 (8)0.0553 (10)0.0041 (7)0.0166 (7)0.0006 (7)
C80.0372 (8)0.0469 (8)0.0445 (9)0.0000 (7)0.0114 (7)0.0029 (7)
C90.0347 (7)0.0387 (7)0.0351 (7)0.0001 (6)0.0101 (6)0.0047 (6)
C100.0481 (9)0.0569 (10)0.0460 (9)0.0014 (8)0.0203 (7)0.0064 (8)
C110.0678 (13)0.0557 (11)0.1072 (19)0.0136 (10)0.0293 (13)0.0072 (12)
C120.0502 (9)0.0500 (9)0.0473 (9)0.0154 (7)0.0124 (7)0.0034 (7)
C130.0625 (12)0.0880 (15)0.0467 (10)0.0285 (11)0.0026 (9)0.0024 (10)
N10.0344 (6)0.0527 (8)0.0340 (6)0.0010 (5)0.0115 (5)0.0037 (6)
N20.0375 (7)0.0411 (7)0.0386 (7)0.0032 (5)0.0115 (5)0.0004 (5)
O10.0590 (8)0.0866 (10)0.0472 (8)0.0209 (7)0.0143 (6)0.0180 (7)
S10.0346 (2)0.0687 (3)0.0442 (3)0.00839 (18)0.01022 (17)0.00658 (19)
Geometric parameters (Å, º) top
C1—C61.371 (2)C9—N11.401 (2)
C1—C21.379 (3)C9—S11.6747 (17)
C1—H10.9300C10—N21.469 (2)
C2—C31.371 (3)C10—C111.516 (3)
C2—H20.9300C10—H10A0.9700
C3—C41.370 (4)C10—H10B0.9700
C3—H30.9300C11—H11A0.9600
C4—C51.374 (3)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.384 (2)C12—N21.474 (2)
C5—H50.9300C12—C131.515 (3)
C6—C71.516 (2)C12—H12A0.9700
C7—C81.506 (2)C12—H12B0.9700
C7—H7A0.9700C13—H13A0.9600
C7—H7B0.9700C13—H13B0.9600
C8—O11.205 (2)C13—H13C0.9600
C8—N11.377 (2)N1—H1'0.8600
C9—N21.322 (2)
C6—C1—C2120.61 (17)N2—C10—C11112.09 (16)
C6—C1—H1119.7N2—C10—H10A109.2
C2—C1—H1119.7C11—C10—H10A109.2
C3—C2—C1120.1 (2)N2—C10—H10B109.2
C3—C2—H2120.0C11—C10—H10B109.2
C1—C2—H2120.0H10A—C10—H10B107.9
C4—C3—C2119.81 (19)C10—C11—H11A109.5
C4—C3—H3120.1C10—C11—H11B109.5
C2—C3—H3120.1H11A—C11—H11B109.5
C3—C4—C5120.2 (2)C10—C11—H11C109.5
C3—C4—H4119.9H11A—C11—H11C109.5
C5—C4—H4119.9H11B—C11—H11C109.5
C4—C5—C6120.4 (2)N2—C12—C13113.49 (14)
C4—C5—H5119.8N2—C12—H12A108.9
C6—C5—H5119.8C13—C12—H12A108.9
C1—C6—C5118.89 (17)N2—C12—H12B108.9
C1—C6—C7120.65 (15)C13—C12—H12B108.9
C5—C6—C7120.42 (17)H12A—C12—H12B107.7
C8—C7—C6111.86 (14)C12—C13—H13A109.5
C8—C7—H7A109.2C12—C13—H13B109.5
C6—C7—H7A109.2H13A—C13—H13B109.5
C8—C7—H7B109.2C12—C13—H13C109.5
C6—C7—H7B109.2H13A—C13—H13C109.5
H7A—C7—H7B107.9H13B—C13—H13C109.5
O1—C8—N1122.88 (15)C8—N1—C9124.21 (14)
O1—C8—C7122.95 (16)C8—N1—H1'117.9
N1—C8—C7114.16 (15)C9—N1—H1'117.9
N2—C9—N1118.15 (13)C9—N2—C10119.78 (13)
N2—C9—S1124.09 (12)C9—N2—C12124.49 (13)
N1—C9—S1117.75 (12)C10—N2—C12115.02 (14)
C6—C1—C2—C30.4 (3)O1—C8—N1—C98.9 (3)
C1—C2—C3—C40.6 (3)C7—C8—N1—C9172.09 (14)
C2—C3—C4—C50.0 (3)N2—C9—N1—C862.2 (2)
C3—C4—C5—C60.8 (3)S1—C9—N1—C8118.74 (15)
C2—C1—C6—C50.4 (2)N1—C9—N2—C10178.25 (14)
C2—C1—C6—C7177.23 (15)S1—C9—N2—C102.7 (2)
C4—C5—C6—C11.0 (3)N1—C9—N2—C1211.9 (2)
C4—C5—C6—C7176.60 (17)S1—C9—N2—C12167.16 (12)
C1—C6—C7—C8107.78 (18)C11—C10—N2—C988.3 (2)
C5—C6—C7—C874.7 (2)C11—C10—N2—C1282.5 (2)
C6—C7—C8—O196.5 (2)C13—C12—N2—C9122.62 (19)
C6—C7—C8—N182.50 (18)C13—C12—N2—C1067.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.693.404 (3)141
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H18N2OS
Mr250.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.578 (7), 12.804 (8), 9.176 (6)
β (°) 103.842 (10)
V3)1320.8 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.934, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
7619, 3080, 2484
Rint0.028
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.05
No. of reflections3080
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.37

Computer programs: , APEX2 (Bruker, 2001) and SAINT (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1'···S1i0.862.693.404 (3)140.8
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

Financial support of this work by the Foundation of Northwest University for Nationalities are acknowledged.

References

First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525.  Web of Science CrossRef CAS Google Scholar
First citationJones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669.  Web of Science CrossRef CAS Google Scholar
First citationKushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett. 62, 3931–3933.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Q. (2005). Acta Cryst. E61, o3492–o3494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, B. Q. (2007). J. Chem. Crystallogr. 37, 87–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationXian, L. (2008). Acta Cryst. E64, o1969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453–457.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds