organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2-(5-iodo-7-methyl-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 November 2008; accepted 19 November 2008; online 26 November 2008)

In the title mol­ecule, C15H17IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. In the crystal structure, inter­molecular I⋯O [2.994 (3) Å] halogen bonding links the mol­ecules into centrosymmetric dimers, which are further packed into ribbons along the c axis by inter­molecular sulfin­yl–sulfinyl inter­actions [S⋯O 3.128 (3) Å].

Related literature

For the crystal structures of similar isopropyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250.]). For a review of halogen bonding, see Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). For a review of carbon­yl–carbonyl inter­actions, see Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17IO4S

  • Mr = 420.25

  • Monoclinic, C 2/c

  • a = 17.615 (2) Å

  • b = 10.0905 (7) Å

  • c = 19.144 (1) Å

  • β = 99.177 (2)°

  • V = 3359.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.480, Tmax = 0.667

  • 6667 measured reflections

  • 2897 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.064

  • S = 1.24

  • 2897 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected interatomic distances (Å)

I⋯O4i 2.994 (3)
S⋯O4ii 3.128 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, viz. isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.030 (3) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular I···O halogen bonding (Politzer et al., 2007) of 2.994 (3) Å and a nearly linear C—I···O angle of 168.51 (9)°, which link the molecules into centrosymmetric dimers (Table 1). These dimers are further packed into ribbons along the c axis by sulfinyl–sulfinyl interactions (Table 1) interpreted as simliar to a type–II carbonyl–carbonyl interaction (Allen et al., 1998).

Related literature top

For the crystal structures of similar isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi et al. (2008a,b). For a review of halogen bonding, see Politzer et al. (2007). For a review of carbonyl–carbonyl interactions, see Allen et al. (1998).

Experimental top

77% 3-Chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-iodo-7-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (202 mg, 0.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 81%, m.p. 396-397 K; Rf = 0.74 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.27 (d, J = 6.24 Hz, 6H), 2.46 (s, 3H), 3.06 (s, 3H), 4.00 (s, 2H), 5.03-5.09 (m, 1H), 7.49 (s, 1H), 8.10 (s, 1H); EI-MS 420 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing the I···O halogen bonding and S···O interactions by dotted lines [symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, y, -z+1/2; (iii) x, -y+1, z-1/2].
Isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C15H17IO4SF(000) = 1664
Mr = 420.25Dx = 1.662 Mg m3
Monoclinic, C2/cMelting point = 420–421 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.615 (2) ÅCell parameters from 5394 reflections
b = 10.0905 (7) Åθ = 2.2–28.1°
c = 19.144 (1) ŵ = 2.04 mm1
β = 99.177 (2)°T = 298 K
V = 3359.2 (5) Å3Block, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2897 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 1221
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.480, Tmax = 0.667l = 2323
6667 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.064H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2)]
2897 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H17IO4SV = 3359.2 (5) Å3
Mr = 420.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.615 (2) ŵ = 2.04 mm1
b = 10.0905 (7) ÅT = 298 K
c = 19.144 (1) Å0.40 × 0.30 × 0.20 mm
β = 99.177 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2172 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.667Rint = 0.030
6667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.24Δρmax = 0.49 e Å3
2897 reflectionsΔρmin = 0.37 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.513353 (18)0.743648 (18)0.024404 (13)0.04774 (10)
S0.60070 (6)0.34161 (6)0.23510 (5)0.0450 (2)
O10.61238 (16)0.71392 (18)0.29955 (13)0.0445 (7)
O20.71791 (17)0.4874 (2)0.48324 (13)0.0503 (7)
O30.7643 (2)0.5249 (3)0.38247 (15)0.0783 (10)
O40.53494 (17)0.3086 (2)0.17899 (13)0.0554 (7)
C10.6014 (2)0.5163 (3)0.24557 (19)0.0408 (9)
C20.5868 (2)0.6160 (2)0.19074 (19)0.0382 (9)
C30.5656 (2)0.6170 (3)0.11784 (18)0.0389 (9)
H30.56040.53860.09200.047*
C40.5524 (2)0.7395 (2)0.0848 (2)0.0394 (8)
C50.5640 (2)0.8584 (3)0.12417 (19)0.0430 (9)
H50.55670.93880.10030.052*
C60.5853 (2)0.8597 (3)0.19600 (19)0.0414 (9)
C70.5950 (2)0.7356 (2)0.2277 (2)0.0385 (8)
C80.6142 (2)0.5781 (3)0.30852 (19)0.0409 (9)
C90.6276 (2)0.5310 (3)0.3828 (2)0.0470 (10)
H9A0.60210.44630.38510.056*
H9B0.60420.59320.41160.056*
C100.7106 (3)0.5155 (3)0.4138 (2)0.0452 (10)
C110.7939 (3)0.4653 (4)0.5226 (2)0.0575 (11)
H110.82620.42170.49220.069*
C120.7830 (3)0.3742 (4)0.5829 (2)0.0690 (13)
H12A0.75930.29330.56420.083*
H12B0.75070.41660.61210.083*
H12C0.83210.35480.61060.083*
C130.8288 (3)0.5958 (5)0.5478 (3)0.0918 (17)
H13A0.79710.63820.57750.110*
H13B0.83250.65130.50770.110*
H13C0.87920.58130.57410.110*
C140.5999 (3)0.9856 (3)0.2391 (2)0.0615 (12)
H14A0.59010.96980.28630.092*
H14B0.56641.05440.21760.092*
H14C0.65251.01250.24070.092*
C150.6855 (3)0.3293 (4)0.1950 (3)0.0887 (19)
H15A0.69470.23810.18480.133*
H15B0.72860.36360.22690.133*
H15C0.67870.37960.15190.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.0565 (2)0.04572 (12)0.04033 (15)0.00107 (11)0.00570 (13)0.00037 (10)
S0.0481 (7)0.0287 (3)0.0571 (6)0.0014 (4)0.0050 (5)0.0060 (3)
O10.056 (2)0.0353 (10)0.0405 (15)0.0035 (10)0.0028 (14)0.0011 (9)
O20.0467 (19)0.0623 (14)0.0407 (16)0.0041 (13)0.0029 (14)0.0026 (12)
O30.050 (2)0.133 (2)0.054 (2)0.0157 (18)0.0137 (18)0.0208 (17)
O40.073 (2)0.0443 (11)0.0475 (17)0.0087 (12)0.0045 (16)0.0040 (11)
C10.042 (2)0.0309 (13)0.048 (2)0.0029 (14)0.0013 (18)0.0044 (13)
C20.036 (2)0.0290 (13)0.049 (2)0.0007 (13)0.0047 (19)0.0011 (13)
C30.041 (2)0.0303 (13)0.044 (2)0.0048 (13)0.0030 (19)0.0053 (13)
C40.038 (2)0.0395 (15)0.040 (2)0.0008 (14)0.0057 (18)0.0016 (13)
C50.049 (3)0.0282 (13)0.051 (2)0.0017 (14)0.007 (2)0.0047 (14)
C60.049 (3)0.0318 (14)0.042 (2)0.0027 (14)0.0035 (19)0.0004 (13)
C70.040 (2)0.0319 (14)0.041 (2)0.0033 (13)0.0007 (18)0.0019 (13)
C80.038 (2)0.0351 (14)0.048 (2)0.0014 (14)0.0022 (19)0.0053 (14)
C90.046 (3)0.0473 (16)0.047 (2)0.0063 (17)0.004 (2)0.0062 (15)
C100.047 (3)0.0417 (15)0.047 (2)0.0019 (16)0.008 (2)0.0035 (15)
C110.047 (3)0.078 (2)0.045 (3)0.019 (2)0.002 (2)0.0008 (19)
C120.084 (4)0.068 (2)0.051 (3)0.014 (2)0.002 (3)0.0033 (19)
C130.077 (4)0.117 (4)0.076 (4)0.037 (3)0.004 (3)0.007 (3)
C140.086 (4)0.0306 (14)0.064 (3)0.0021 (17)0.002 (2)0.0057 (15)
C150.073 (4)0.052 (2)0.151 (6)0.006 (2)0.049 (4)0.001 (2)
Geometric parameters (Å, º) top
I—C42.095 (4)C6—C141.514 (4)
I—O4i2.994 (3)C8—C91.483 (5)
S—O41.486 (3)C9—C101.496 (5)
S—O4ii3.128 (3)C9—H9A0.9700
S—C11.773 (3)C9—H9B0.9700
S—C151.789 (4)C11—C131.500 (6)
O1—C71.378 (4)C11—C121.511 (5)
O1—C81.381 (3)C11—H110.9800
O2—C101.346 (4)C12—H12A0.9600
O2—C111.445 (6)C12—H12B0.9600
O3—C101.201 (4)C12—H12C0.9600
C1—C81.344 (5)C13—H13A0.9600
C1—C21.447 (5)C13—H13B0.9600
C2—C31.386 (5)C13—H13C0.9600
C2—C71.395 (4)C14—H14A0.9600
C3—C41.392 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.414 (4)C15—H15A0.9600
C5—C61.367 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.390 (4)
I···O4i2.994 (3)S···O4ii3.128 (3)
O4—S—C1107.19 (17)H9A—C9—H9B107.6
C4—I—O4i168.51 (9)O3—C10—O2123.5 (4)
O4—S—C15106.4 (2)O3—C10—C9126.3 (4)
C1—S—C1597.22 (16)O2—C10—C9110.3 (3)
C7—O1—C8106.2 (2)O2—C11—C13109.3 (3)
C10—O2—C11118.8 (3)O2—C11—C12105.8 (4)
C8—C1—C2108.2 (3)C13—C11—C12112.6 (4)
C8—C1—S124.1 (3)O2—C11—H11109.7
C2—C1—S127.7 (3)C13—C11—H11109.7
C3—C2—C7119.6 (3)C12—C11—H11109.7
C3—C2—C1136.4 (3)C11—C12—H12A109.5
C7—C2—C1104.0 (3)C11—C12—H12B109.5
C2—C3—C4117.6 (3)H12A—C12—H12B109.5
C2—C3—H3121.2C11—C12—H12C109.5
C4—C3—H3121.2H12A—C12—H12C109.5
C3—C4—C5120.8 (4)H12B—C12—H12C109.5
C3—C4—I118.4 (2)C11—C13—H13A109.5
C5—C4—I120.7 (2)C11—C13—H13B109.5
C6—C5—C4122.5 (3)H13A—C13—H13B109.5
C6—C5—H5118.7C11—C13—H13C109.5
C4—C5—H5118.7H13A—C13—H13C109.5
C5—C6—C7115.2 (3)H13B—C13—H13C109.5
C5—C6—C14123.5 (3)C6—C14—H14A109.5
C7—C6—C14121.3 (3)C6—C14—H14B109.5
O1—C7—C6124.8 (3)H14A—C14—H14B109.5
O1—C7—C2110.9 (2)C6—C14—H14C109.5
C6—C7—C2124.2 (4)H14A—C14—H14C109.5
C1—C8—O1110.6 (3)H14B—C14—H14C109.5
C1—C8—C9133.6 (3)S—C15—H15A109.5
O1—C8—C9115.8 (3)S—C15—H15B109.5
C8—C9—C10114.2 (3)H15A—C15—H15B109.5
C8—C9—H9A108.7S—C15—H15C109.5
C10—C9—H9A108.7H15A—C15—H15C109.5
C8—C9—H9B108.7H15B—C15—H15C109.5
C10—C9—H9B108.7
O4—S—C1—C8137.8 (3)C5—C6—C7—C22.3 (6)
C15—S—C1—C8112.5 (4)C14—C6—C7—C2176.2 (4)
O4—S—C1—C240.3 (4)C3—C2—C7—O1176.9 (3)
C15—S—C1—C269.4 (4)C1—C2—C7—O10.6 (4)
C8—C1—C2—C3175.0 (4)C3—C2—C7—C61.9 (6)
S—C1—C2—C33.4 (7)C1—C2—C7—C6179.4 (4)
C8—C1—C2—C71.9 (4)C2—C1—C8—O12.5 (4)
S—C1—C2—C7179.8 (3)S—C1—C8—O1179.1 (3)
C7—C2—C3—C40.8 (5)C2—C1—C8—C9175.8 (4)
C1—C2—C3—C4175.7 (4)S—C1—C8—C92.6 (6)
C2—C3—C4—C53.0 (5)C7—O1—C8—C12.1 (4)
C2—C3—C4—I176.1 (2)C7—O1—C8—C9176.6 (3)
C3—C4—C5—C62.7 (6)C1—C8—C9—C1093.3 (5)
I—C4—C5—C6176.4 (3)O1—C8—C9—C1088.4 (4)
C4—C5—C6—C70.1 (5)C11—O2—C10—O30.9 (5)
C4—C5—C6—C14178.5 (4)C11—O2—C10—C9178.4 (3)
C8—O1—C7—C6178.0 (4)C8—C9—C10—O37.7 (5)
C8—O1—C7—C20.8 (4)C8—C9—C10—O2172.9 (2)
C5—C6—C7—O1176.4 (3)C10—O2—C11—C1386.0 (4)
C14—C6—C7—O15.1 (6)C10—O2—C11—C12152.5 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17IO4S
Mr420.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.615 (2), 10.0905 (7), 19.144 (1)
β (°) 99.177 (2)
V3)3359.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.480, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
6667, 2897, 2172
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.064, 1.24
No. of reflections2897
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected interatomic distances (Å) top
I···O4i2.994 (3)S···O4ii3.128 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1/2.
 

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds