organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­phenyl­butane-1,4-dione

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: chwangzhigang@yahoo.com.cn

(Received 13 November 2008; accepted 19 November 2008; online 22 November 2008)

The asymmetric unit of the title compound, C16H14O2, contains one half-mol­ecule, located on a twofold rotation axis. In the mol­ecule, the two benzene rings form a dihedral angle of 72.28 (2)°.

Related literature

For useful applications of 1,4-dicarbonyl compounds, see: Chiu & Sammes (1990[Chiu, P.-K. & Sammes, M. P. (1990). Tetrahedron, 46, 3439-3456.]); Greatrex et al. (2003[Greatrex, B. W., Kimber, M. C., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 4239-4246.]); Nagarajan & Shechter (1984[Nagarajan, G. & Shechter, H. (1984). J. Org. Chem. 49, 62-74.]). For details of the synthesis, see Nevar et al. (2000[Nevar, N. M., Kel'in, A. V. & Kulinkovich, O. G. (2000). Synthesis, pp. 1259-1262.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O2

  • Mr = 238.27

  • Orthorhombic, P 21 21 2

  • a = 8.3781 (13) Å

  • b = 14.161 (2) Å

  • c = 5.3186 (8) Å

  • V = 631.00 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.992

  • 4063 measured reflections

  • 762 independent reflections

  • 640 reflections with I > 2σ(I)

  • Rint = 0.163

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.05

  • 762 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and they are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Chiu & Sammes, 1990; Greatrex et al., 2003; Nagarajan & Shechter, 1984). Herewith we present the title compound (I) (Fig. 1). The asymmetric unit of (I) contains a half of the molecule located on a twofold rotational axis. Two benzene rings form a dihedral angle of 72.28 (2)°.

Related literature top

For useful applications of 1,4-dicarbonyl compounds, see: Chiu & Sammes (1990); Greatrex et al. (2003); Nagarajan & Shechter (1984). For details of the synthesis, see Nevar et al. (2000).

Experimental top

The title compound was synthesized as previously described by Nevar et al. (2000). Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 1:3 ratio EtOAc:cyclohexane solution at room temperture.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied. In the absence of anomalous scatterers, no attempt was made to establish the absolute configuration of the title compound, and 488 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) -x, -y + 1, z].
1,4-Diphenylbutane-1,4-dione top
Crystal data top
C16H14O2F(000) = 252
Mr = 238.27Dx = 1.254 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1423 reflections
a = 8.3781 (13) Åθ = 2.8–22.3°
b = 14.161 (2) ŵ = 0.08 mm1
c = 5.3186 (8) ÅT = 298 K
V = 631.00 (17) Å3Block, colourless
Z = 20.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
762 independent reflections
Radiation source: fine-focus sealed tube640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.163
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 109
Tmin = 0.984, Tmax = 0.992k = 1617
4063 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
762 reflections(Δ/σ)max = 0.012
83 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H14O2V = 631.00 (17) Å3
Mr = 238.27Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.3781 (13) ŵ = 0.08 mm1
b = 14.161 (2) ÅT = 298 K
c = 5.3186 (8) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
762 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
640 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.163
4063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
762 reflectionsΔρmin = 0.22 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1095 (3)0.30567 (15)0.2151 (4)0.0508 (6)
C70.1070 (3)0.40988 (16)0.1653 (5)0.0574 (7)
C40.1208 (3)0.11385 (19)0.3179 (6)0.0699 (7)
H40.12410.04960.35320.084*
C80.0072 (4)0.44647 (16)0.0468 (5)0.0670 (7)
H8A0.09860.41910.03540.080*
H8B0.05400.42630.20470.080*
C30.2031 (3)0.17678 (17)0.4670 (5)0.0704 (8)
H30.26250.15480.60260.085*
C60.0283 (3)0.24197 (17)0.0654 (5)0.0608 (7)
H60.03070.26340.07130.073*
C20.1980 (3)0.27214 (16)0.4163 (5)0.0608 (7)
H20.25410.31420.51760.073*
O10.1843 (3)0.46221 (13)0.2966 (5)0.0984 (8)
C50.0345 (3)0.14619 (18)0.1188 (6)0.0712 (8)
H50.02060.10370.01770.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (11)0.0571 (13)0.0490 (11)0.0054 (10)0.0025 (10)0.0053 (10)
C70.0558 (13)0.0561 (13)0.0603 (14)0.0011 (11)0.0034 (12)0.0105 (11)
C40.0636 (15)0.0595 (13)0.0867 (18)0.0061 (13)0.0053 (15)0.0043 (15)
C80.0839 (17)0.0614 (14)0.0555 (13)0.0048 (13)0.0040 (14)0.0074 (11)
C30.0658 (16)0.0769 (17)0.0686 (16)0.0155 (14)0.0023 (15)0.0091 (15)
C60.0613 (14)0.0604 (13)0.0607 (13)0.0011 (11)0.0092 (13)0.0065 (12)
C20.0560 (14)0.0676 (14)0.0589 (14)0.0046 (12)0.0060 (12)0.0094 (12)
O10.1149 (17)0.0632 (11)0.1172 (17)0.0067 (11)0.0544 (16)0.0120 (12)
C50.0696 (17)0.0597 (14)0.0843 (17)0.0059 (13)0.0060 (16)0.0117 (14)
Geometric parameters (Å, º) top
C1—C61.382 (3)C8—H8A0.9700
C1—C21.386 (3)C8—H8B0.9700
C1—C71.499 (3)C3—C21.378 (3)
C7—O11.207 (3)C3—H30.9300
C7—C81.496 (3)C6—C51.387 (4)
C4—C51.361 (4)C6—H60.9300
C4—C31.378 (3)C2—H20.9300
C4—H40.9300C5—H50.9300
C8—C8i1.521 (4)
C6—C1—C2119.0 (2)H8A—C8—H8B107.8
C6—C1—C7122.3 (2)C4—C3—C2120.4 (2)
C2—C1—C7118.74 (19)C4—C3—H3119.8
O1—C7—C8121.5 (2)C2—C3—H3119.8
O1—C7—C1119.7 (2)C1—C6—C5120.1 (2)
C8—C7—C1118.8 (2)C1—C6—H6119.9
C5—C4—C3119.7 (2)C5—C6—H6119.9
C5—C4—H4120.1C3—C2—C1120.2 (2)
C3—C4—H4120.1C3—C2—H2119.9
C7—C8—C8i112.9 (2)C1—C2—H2119.9
C7—C8—H8A109.0C4—C5—C6120.6 (2)
C8i—C8—H8A109.0C4—C5—H5119.7
C7—C8—H8B109.0C6—C5—H5119.7
C8i—C8—H8B109.0
C6—C1—C7—O1177.5 (3)C2—C1—C6—C50.7 (3)
C2—C1—C7—O11.7 (4)C7—C1—C6—C5179.8 (3)
C6—C1—C7—C82.8 (3)C4—C3—C2—C10.2 (4)
C2—C1—C7—C8178.0 (2)C6—C1—C2—C30.6 (4)
O1—C7—C8—C8i9.8 (4)C7—C1—C2—C3179.9 (2)
C1—C7—C8—C8i169.9 (3)C3—C4—C5—C60.3 (4)
C5—C4—C3—C20.3 (4)C1—C6—C5—C40.2 (4)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14O2
Mr238.27
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)8.3781 (13), 14.161 (2), 5.3186 (8)
V3)631.00 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.984, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4063, 762, 640
Rint0.163
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.05
No. of reflections762
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Ling Fan for a valuable discussion.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiu, P.-K. & Sammes, M. P. (1990). Tetrahedron, 46, 3439–3456.  CAS Google Scholar
First citationGreatrex, B. W., Kimber, M. C., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 4239–4246.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNagarajan, G. & Shechter, H. (1984). J. Org. Chem. 49, 62–74.  CrossRef CAS Web of Science Google Scholar
First citationNevar, N. M., Kel'in, A. V. & Kulinkovich, O. G. (2000). Synthesis, pp. 1259–1262.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds