organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­benzo­yl)-3-[5-(4-pyrid­yl)-1,3,4-thia­diazol-2-yl]urea

aDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466000, People's Republic of China, bKey Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China, and cSchool of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China
*Correspondence e-mail: whxjsong@yahoo.com.cn

(Received 14 October 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound, C16H13N5O2S, the five non-H atoms of the urea linkage adopt a planar configuration owing to the presence of an intra­molecular N—H⋯O hydrogen bond. The maximum deviation from planarity is 0.022 (2) Å. The thia­diazole and pyridine heterocyclic rings are close to being coplanar, with a dihedral angle of 6.7 (2)° between their mean planes. Inter­molecular N—H⋯O hydrogen bonds link two neighbouring mol­ecules into centrosymmetric R22(8) dimers. Four C atoms and the attached H atoms of the benzene ring are disordered over two positions of equal occupancy.

Related literature

For general background, see: Chen et al. (2005[Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38-41.]); Foroumadi et al. (2002[Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765-769.]); Song et al. (2007[Song, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon, 182, 1907-1913.]); Song et al. (2008[Song, X. J., Tan, X. H. & Wang, Y. G. (2008). J. Chem. Crystallogr. 38, 479-482.]). For related structures, see: Song & Tan et al. (2005[Song, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. & Wang, Y.-G. (2005). Acta Cryst. E61, o3066-o3068.]). For the synthesis, see: Song & Feng et al. (2005[Song, X. J., Feng, G. R., Chen, C. B., Zhang, Z. W. & Wang, Y. G. (2005). Chin. J. Org. Chem. 25, 1587-1590.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N5O2S

  • Mr = 339.37

  • Triclinic, [P \overline 1]

  • a = 5.0563 (5) Å

  • b = 11.8561 (11) Å

  • c = 13.2506 (12) Å

  • α = 88.892 (2)°

  • β = 80.849 (2)°

  • γ = 77.989 (2)°

  • V = 766.99 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 297 (2) K

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6171 measured reflections

  • 2978 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.195

  • S = 1.06

  • 2978 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.90 2.583 (3) 135
N1—H1⋯O2i 0.86 2.10 2.935 (3) 165
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives have been reported to possess broad spectrum bioactivities (Foroumadi et al., 2002; Song et al., 2007). Urea derivatives, especially aroylurea derivatives, have attracted many chemist's interest owing to their diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth regulating activities (Chen et al., 2005; Song et al., 2008). Furthermore, pyridine derivatives have become one of research hotspots in modern agrochemistry and medicinal chemistry. In our continuing search for new plant-growth regulators, we would like to investigate aroyl ureas incorporating both 1,3,4-thiadiazole and pyridine rings, including the title compound.

The crystal structure (Fig.1) revealed that the urea linkage unit O1—C8—N1—C9—N2—H2 adopts the stable conformation due to the the formation of a strong intramolecular N—H···O hydrogen bond to give a planar six-membered ring, as reported (Song and Tan et al., 2005), which is essentially coplanar with a maximum deviation from planarity of 0.022 (2)Å for atom O1. The thiadiazole and pyridine heterocyclic fragments also lie essentially in the same plane, the maximum deviation from that plane being 0.059 (3)Å for atom C15. The dihedral angle between the two mean planes is 6.7 (2)°. All bond lengths and angles are as expected. In the crystal structure, the molecules are linked by complementary N—H···O hydrogen bonds into centrosymmetric R22(8) dimers (Fig. 2 and Table 1).

Related literature top

For general background, see: Chen et al. (2005); Foroumadi et al. (2002); Song et al. (2007); Song et al. (2008). For related structures, see: Song & Tan et al. (2005). For the synthesis, see: Song & Feng et al. (2005).

Experimental top

The title compound was prepared according to the procedure of Song and Feng et al. (2005). Suitable crystals were obtained by vapor diffusion of methanol in DMF at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for C16H13N5O2S: C 56.63, H 3.86, N 20.64%; found: C 56.55, H 3.76, N 20.81%.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. Other H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H distances of 0.93 Å, N—H distances of 0.86Å and Uiso(H) = 1.2Ueq(C). The atoms C3, C4, C6 and C7 in the benzene ring are found to be disordered over two positions.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.
[Figure 2] Fig. 2. A partial packing diagram for (I) [symmetry code: (a) 2 - x, 2 - y, -z]. Hydrogen bonds are indicated by dashed lines.
1-(4-Methylbenzoyl)-3-[5-(4-pyridyl)-1,3,4-thiadiazol-2-yl]urea top
Crystal data top
C16H13N5O2SZ = 2
Mr = 339.37F(000) = 352
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 5.0563 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8561 (11) ÅCell parameters from 1721 reflections
c = 13.2506 (12) Åθ = 2.3–24.7°
α = 88.892 (2)°µ = 0.23 mm1
β = 80.849 (2)°T = 297 K
γ = 77.989 (2)°Block, colorless
V = 766.99 (13) Å30.20 × 0.10 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2120 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ϕ and ω scansh = 66
6171 measured reflectionsk = 1414
2978 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1026P)2]
where P = (Fo2 + 2Fc2)/3
2978 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H13N5O2Sγ = 77.989 (2)°
Mr = 339.37V = 766.99 (13) Å3
Triclinic, P1Z = 2
a = 5.0563 (5) ÅMo Kα radiation
b = 11.8561 (11) ŵ = 0.23 mm1
c = 13.2506 (12) ÅT = 297 K
α = 88.892 (2)°0.20 × 0.10 × 0.04 mm
β = 80.849 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2120 reflections with I > 2σ(I)
6171 measured reflectionsRint = 0.096
2978 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2978 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.59211 (17)0.73166 (7)0.09171 (5)0.0562 (3)
N10.8010 (5)0.96100 (19)0.13767 (16)0.0449 (6)
H10.91091.00580.11590.054*
N20.5583 (5)0.82578 (19)0.09796 (16)0.0459 (6)
H20.49950.82590.16250.055*
N30.2887 (6)0.6962 (2)0.07332 (18)0.0565 (7)
N40.2335 (5)0.6273 (2)0.00007 (19)0.0537 (7)
N50.3212 (7)0.4482 (3)0.3539 (2)0.0800 (9)
O10.5680 (6)0.8977 (2)0.27987 (16)0.0916 (9)
O20.8225 (5)0.90478 (17)0.02610 (13)0.0574 (6)
C11.0069 (10)1.2823 (3)0.5070 (3)0.0936 (14)
H1A0.92551.27080.57590.140*
H1B0.94001.36010.48740.140*
H1C1.20241.26840.50250.140*
C20.9326 (7)1.1995 (3)0.4361 (2)0.0567 (8)
C50.8036 (6)1.0456 (2)0.3046 (2)0.0460 (7)
C3A0.9463 (13)1.2164 (5)0.3343 (4)0.0512 (14)*0.50
H3A0.98701.28520.30820.061*0.50
C4A0.9036 (12)1.1382 (5)0.2677 (4)0.0432 (13)*0.50
H4A0.94291.14840.19760.052*0.50
C6A0.7810 (12)1.0218 (5)0.4113 (4)0.0501 (14)*0.50
H6A0.73570.95340.43650.060*0.50
C7A0.8276 (13)1.1023 (6)0.4758 (5)0.0533 (15)*0.50
H7A0.79031.09330.54620.064*0.50
C3B1.1141 (12)1.1626 (5)0.3379 (4)0.0473 (13)*0.50
H3B1.27991.18570.31970.057*0.50
C4B1.0226 (12)1.0914 (5)0.2743 (4)0.0405 (12)*0.50
H4B1.11791.07530.20840.049*0.50
C6B0.6374 (12)1.0858 (5)0.3994 (4)0.0464 (13)*0.50
H6B0.47111.06340.41880.056*0.50
C7B0.7220 (13)1.1576 (5)0.4624 (4)0.0468 (14)*0.50
H7B0.62001.17600.52700.056*0.50
C80.7154 (7)0.9624 (3)0.2418 (2)0.0518 (8)
C90.7317 (6)0.8962 (2)0.0638 (2)0.0430 (7)
C100.4699 (6)0.7538 (2)0.03602 (19)0.0422 (6)
C110.3759 (6)0.6354 (2)0.0884 (2)0.0454 (7)
C120.3576 (6)0.5700 (2)0.1797 (2)0.0503 (7)
C130.5012 (9)0.5865 (4)0.2729 (3)0.1010 (16)
H130.61680.63870.27960.121*
C140.4754 (10)0.5258 (4)0.3576 (3)0.1101 (18)
H140.57200.54050.42060.132*
C150.1854 (7)0.4317 (3)0.2624 (3)0.0663 (9)
H150.07590.37710.25720.080*
C160.1956 (7)0.4896 (3)0.1754 (2)0.0581 (8)
H160.09370.47470.11360.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0657 (6)0.0700 (6)0.0411 (5)0.0402 (4)0.0034 (3)0.0127 (3)
N10.0545 (15)0.0513 (13)0.0352 (12)0.0283 (11)0.0024 (10)0.0022 (9)
N20.0566 (15)0.0543 (14)0.0333 (12)0.0283 (12)0.0042 (10)0.0003 (10)
N30.0751 (18)0.0661 (16)0.0403 (13)0.0439 (14)0.0060 (12)0.0019 (11)
N40.0653 (17)0.0581 (15)0.0480 (14)0.0341 (13)0.0116 (12)0.0018 (11)
N50.093 (2)0.082 (2)0.073 (2)0.0397 (18)0.0040 (17)0.0306 (16)
O10.145 (2)0.119 (2)0.0372 (12)0.0999 (19)0.0036 (13)0.0042 (12)
O20.0811 (15)0.0682 (13)0.0326 (10)0.0449 (12)0.0014 (9)0.0052 (9)
C10.156 (4)0.078 (3)0.062 (2)0.043 (3)0.035 (2)0.0158 (19)
C20.074 (2)0.0541 (18)0.0452 (17)0.0130 (16)0.0175 (15)0.0104 (13)
C50.0518 (17)0.0528 (16)0.0355 (14)0.0176 (13)0.0036 (12)0.0009 (12)
C80.066 (2)0.0588 (18)0.0353 (15)0.0287 (15)0.0031 (13)0.0002 (12)
C90.0544 (17)0.0432 (15)0.0353 (14)0.0201 (13)0.0055 (12)0.0010 (11)
C100.0485 (16)0.0447 (15)0.0374 (14)0.0173 (12)0.0088 (12)0.0017 (11)
C110.0501 (17)0.0461 (15)0.0440 (16)0.0178 (13)0.0082 (13)0.0026 (12)
C120.0527 (18)0.0505 (16)0.0534 (18)0.0203 (14)0.0114 (14)0.0095 (13)
C130.125 (4)0.136 (4)0.063 (2)0.099 (3)0.022 (2)0.037 (2)
C140.137 (4)0.154 (4)0.059 (2)0.099 (4)0.023 (2)0.043 (2)
C150.079 (2)0.0558 (19)0.075 (2)0.0306 (18)0.0219 (19)0.0083 (16)
C160.073 (2)0.0506 (17)0.0576 (19)0.0263 (16)0.0127 (16)0.0013 (13)
Geometric parameters (Å, º) top
S1—C101.712 (3)C5—C6B1.425 (6)
S1—C111.733 (3)C5—C6A1.427 (6)
N1—C81.378 (3)C5—C81.483 (4)
N1—C91.386 (3)C3A—C4A1.363 (8)
N1—H10.8600C3A—H3A0.9300
N2—C91.354 (3)C4A—H4A0.9300
N2—C101.380 (3)C6A—C7A1.374 (8)
N2—H20.8600C6A—H6A0.9300
N3—C101.285 (3)C7A—H7A0.9300
N3—N41.379 (3)C3B—C4B1.397 (8)
N4—C111.287 (3)C3B—H3B0.9300
N5—C141.320 (5)C4B—H4B0.9300
N5—C151.327 (4)C6B—C7B1.378 (8)
O1—C81.225 (4)C6B—H6B0.9300
O2—C91.217 (3)C7B—H7B0.9300
C1—C21.512 (4)C11—C121.475 (4)
C1—H1A0.9600C12—C131.362 (4)
C1—H1B0.9600C12—C161.375 (4)
C1—H1C0.9600C13—C141.382 (5)
C2—C7B1.264 (6)C13—H130.9300
C2—C3A1.353 (6)C14—H140.9300
C2—C7A1.424 (7)C15—C161.367 (5)
C2—C3B1.483 (6)C15—H150.9300
C5—C4B1.335 (6)C16—H160.9300
C5—C4A1.353 (6)
C10—S1—C1186.09 (12)C6A—C7A—H7A119.7
C8—N1—C9127.9 (2)C2—C7A—H7A119.7
C8—N1—H1116.1C4B—C3B—C2116.5 (5)
C9—N1—H1116.1C4B—C3B—H3B121.8
C9—N2—C10124.4 (2)C2—C3B—H3B121.8
C9—N2—H2117.8C5—C4B—C3B122.4 (5)
C10—N2—H2117.8C5—C4B—H4B118.8
C10—N3—N4111.7 (2)C3B—C4B—H4B118.8
C11—N4—N3112.8 (2)C7B—C6B—C5120.3 (5)
C14—N5—C15115.8 (3)C7B—C6B—H6B119.9
C2—C1—H1A109.5C5—C6B—H6B119.9
C2—C1—H1B109.5C2—C7B—C6B122.7 (5)
H1A—C1—H1B109.5C2—C7B—H7B118.7
C2—C1—H1C109.5C6B—C7B—H7B118.7
H1A—C1—H1C109.5O1—C8—N1120.4 (3)
H1B—C1—H1C109.5O1—C8—C5121.8 (3)
C7B—C2—C3A105.2 (4)N1—C8—C5117.7 (2)
C3A—C2—C7A116.6 (4)O2—C9—N2123.3 (3)
C7B—C2—C3B119.8 (4)O2—C9—N1120.5 (2)
C7A—C2—C3B107.3 (4)N2—C9—N1116.2 (2)
C7B—C2—C1120.0 (4)N3—C10—N2120.5 (2)
C3A—C2—C1122.8 (4)N3—C10—S1115.5 (2)
C7A—C2—C1120.5 (4)N2—C10—S1124.0 (2)
C3B—C2—C1120.1 (4)N4—C11—C12123.7 (3)
C4B—C5—C6B117.5 (4)N4—C11—S1114.0 (2)
C4A—C5—C6B104.1 (4)C12—C11—S1122.3 (2)
C4B—C5—C6A110.0 (4)C13—C12—C16116.6 (3)
C4A—C5—C6A119.8 (4)C13—C12—C11121.4 (3)
C4B—C5—C8123.5 (3)C16—C12—C11122.0 (3)
C4A—C5—C8124.9 (3)C12—C13—C14120.2 (3)
C6B—C5—C8118.9 (3)C12—C13—H13119.9
C6A—C5—C8115.3 (3)C14—C13—H13119.9
C2—C3A—C4A123.7 (5)N5—C14—C13123.5 (4)
C2—C3A—H3A118.1N5—C14—H14118.2
C4A—C3A—H3A118.1C13—C14—H14118.2
C5—C4A—C3A119.4 (5)N5—C15—C16124.3 (3)
C5—C4A—H4A120.3N5—C15—H15117.8
C3A—C4A—H4A120.3C16—C15—H15117.8
C7A—C6A—C5118.5 (5)C15—C16—C12119.6 (3)
C7A—C6A—H6A120.8C15—C16—H16120.2
C5—C6A—H6A120.8C12—C16—H16120.2
C6A—C7A—C2120.7 (5)
C10—N3—N4—C110.4 (4)C9—N1—C8—O13.1 (5)
C7B—C2—C3A—C4A43.7 (7)C9—N1—C8—C5175.8 (3)
C7A—C2—C3A—C4A9.7 (8)C4B—C5—C8—O1158.9 (4)
C3B—C2—C3A—C4A75.1 (7)C4A—C5—C8—O1162.1 (4)
C1—C2—C3A—C4A174.0 (5)C6B—C5—C8—O125.6 (5)
C4B—C5—C4A—C3A89.2 (8)C6A—C5—C8—O118.8 (5)
C6B—C5—C4A—C3A30.4 (7)C4B—C5—C8—N122.2 (5)
C6A—C5—C4A—C3A9.0 (8)C4A—C5—C8—N116.8 (6)
C8—C5—C4A—C3A172.0 (4)C6B—C5—C8—N1153.3 (3)
C2—C3A—C4A—C510.0 (9)C6A—C5—C8—N1162.3 (3)
C4B—C5—C6A—C7A42.4 (7)C10—N2—C9—O21.7 (5)
C4A—C5—C6A—C7A8.5 (7)C10—N2—C9—N1179.0 (2)
C6B—C5—C6A—C7A66.8 (6)C8—N1—C9—O2179.4 (3)
C8—C5—C6A—C7A172.3 (5)C8—N1—C9—N20.1 (5)
C5—C6A—C7A—C28.6 (9)N4—N3—C10—N2178.3 (2)
C7B—C2—C7A—C6A86.0 (9)N4—N3—C10—S10.4 (3)
C3A—C2—C7A—C6A9.0 (8)C9—N2—C10—N3174.6 (3)
C3B—C2—C7A—C6A32.1 (7)C9—N2—C10—S16.8 (4)
C1—C2—C7A—C6A174.6 (5)C11—S1—C10—N30.7 (2)
C7B—C2—C3B—C4B6.7 (7)C11—S1—C10—N2177.9 (3)
C3A—C2—C3B—C4B70.3 (7)N3—N4—C11—C12179.5 (3)
C7A—C2—C3B—C4B40.9 (6)N3—N4—C11—S11.0 (3)
C1—C2—C3B—C4B176.4 (4)C10—S1—C11—N41.0 (2)
C4A—C5—C4B—C3B81.4 (8)C10—S1—C11—C12179.5 (3)
C6B—C5—C4B—C3B9.6 (8)N4—C11—C12—C13176.2 (3)
C6A—C5—C4B—C3B33.0 (7)S1—C11—C12—C133.3 (5)
C8—C5—C4B—C3B174.9 (4)N4—C11—C12—C163.7 (5)
C2—C3B—C4B—C58.8 (8)S1—C11—C12—C16176.7 (2)
C4B—C5—C6B—C7B8.2 (7)C16—C12—C13—C141.4 (7)
C4A—C5—C6B—C7B39.6 (6)C11—C12—C13—C14178.6 (4)
C6A—C5—C6B—C7B80.4 (7)C15—N5—C14—C130.8 (8)
C8—C5—C6B—C7B176.0 (5)C12—C13—C14—N51.8 (9)
C3A—C2—C7B—C6B33.5 (7)C14—N5—C15—C160.5 (6)
C7A—C2—C7B—C6B82.0 (8)N5—C15—C16—C120.8 (6)
C3B—C2—C7B—C6B6.0 (8)C13—C12—C16—C150.2 (5)
C1—C2—C7B—C6B177.1 (5)C11—C12—C16—C15179.7 (3)
C5—C6B—C7B—C26.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.583 (3)135
N1—H1···O2i0.862.102.935 (3)165
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H13N5O2S
Mr339.37
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)5.0563 (5), 11.8561 (11), 13.2506 (12)
α, β, γ (°)88.892 (2), 80.849 (2), 77.989 (2)
V3)766.99 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6171, 2978, 2120
Rint0.096
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.195, 1.06
No. of reflections2978
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.583 (3)135
N1—H1···O2i0.862.102.935 (3)165
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The authors acknowledge financial support from the Scientific Research Fund for Distinguished Young and Middle-aged Talent of Hubei Provincial Department of Education (grant No. Q200729001) and the Natural Science Foundation of Hubei Province, China (grant No. 2007ABA001).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationForoumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765–769.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X. J., Feng, G. R., Chen, C. B., Zhang, Z. W. & Wang, Y. G. (2005). Chin. J. Org. Chem. 25, 1587–1590.  CAS Google Scholar
First citationSong, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. & Wang, Y.-G. (2005). Acta Cryst. E61, o3066–o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon, 182, 1907–1913.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, X. J., Tan, X. H. & Wang, Y. G. (2008). J. Chem. Crystallogr. 38, 479–482.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds