metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

catena-Poly[[aqua­(2,2′-bi­pyridine-κ2N,N′)copper(II)]-μ-5-nitro­isophthalato-κ3O1,O1′:O3]

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 28 September 2008; accepted 28 October 2008; online 8 November 2008)

In the asymmetric unit of the title compound, [Cu(C8H3NO6)(C10H8N2)(H2O)]n, there are two symmetry-independent one-dimensional coordination polymers related by a non-crystallographic inversion center. Within the polymers, the CuII atoms, coordinated by the water mol­ecule and the chelating 2,2′-bipyridine ligands, are bridged by 5-nitro­benzene-1,3-dicarboxyl­ate dianions which act as tridentate ligands; the carboxyl­ate groups exhibit monodentate and symmetric bidentate coordination modes. The CuII atoms show a strongly distorted octa­hedral coordination geometry. In the crystal structure, the two symmetry-independent coordination polymers form another one-dimensional polymeric structure via O—H⋯O hydrogen bonds between coordinated water mol­ecules and carboxyl­ate groups.

Related literature

For the uses of carboxylic acids in materials science, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]), and in biological systems, see: Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Kim et al. (2001[Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H3NO6)(C10H8N2)(H2O)]

  • Mr = 446.85

  • Monoclinic, P 21 /n

  • a = 10.1326 (10) Å

  • b = 23.263 (3) Å

  • c = 15.6087 (15) Å

  • β = 97.28 (2)°

  • V = 3649.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 293 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.907

  • 18862 measured reflections

  • 6694 independent reflections

  • 5089 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.00

  • 6694 reflections

  • 535 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1W⋯O2i 0.83 (4) 1.98 (2) 2.742 (3) 153 (4)
O1—H4W⋯O10ii 0.82 (3) 1.95 (2) 2.724 (3) 158 (4)
O12—H2W⋯O5 0.82 (4) 2.07 (3) 2.760 (3) 141 (4)
O1—H3W⋯O13 0.83 (3) 2.13 (3) 2.778 (3) 135 (4)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959) and in biological systems (Okabe & Oya, 2000). For example, Kim et al. (2001) focused on the syntheses of transition metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The title compound, [Cu(C8H3NO6)(C10H8N2)(H2O)]n is a one-dimensional coordination polymer (Fig. 2). There are two symmetry independent 1D polymers in the crystal. The Cu(II) atom shows a strongly disordered coordination geometry. It is coordinated by two carboxylate groups from two different 5-nitroisophthalate ligands, 2,2'-bipyridyl and water molecule. The carboxylate groups act in a monodentate and bidentate coordination modes.The symmetry independent polymeric chains are linked via O-H···O hydrogen bonds (Table 1).

Related literature top

For the uses of carboxylic acids in materials science, see: Church & Halvorson (1959), and in biological systems, see: Okabe & Oya (2000); Kim et al. (2001).

Experimental top

A mixture of copper dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Blue crystals were obtained after cooling to room temperature (yield 27%). Anal. Calc. for C18H13CuN3O7: C 48.34, H 2.91, N 10.74%; Found: C 48.30, H 2.84, N 10.69%.

Refinement top

The H atoms of water molecule were located from difference Fourier maps and were refined with distance restraints: d(H–H) = 1.38 (2) Å, d(O–H) = 0.88 (2) Å, and with a fixed Uiso of 0.080 Å2. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and refined in the riding model approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title structure showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. One of the symmetry-independent coordination polymers
catena-Poly[[aqua(2,2'-bipyridine-κ2N,N')copper(II)]- µ-5-nitroisophthalato-κ3O1,O1':O3] top
Crystal data top
[Cu(C8H3NO6)(C10H8N2)(H2O)]F(000) = 1816
Mr = 446.85Dx = 1.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6694 reflections
a = 10.1326 (10) Åθ = 1.8–25.5°
b = 23.263 (3) ŵ = 1.25 mm1
c = 15.6087 (15) ÅT = 293 K
β = 97.28 (2)°Block, blue
V = 3649.6 (7) Å30.12 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6694 independent reflections
Radiation source: fine-focus sealed tube5089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.865, Tmax = 0.907k = 2822
18862 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2 + 2.4671P]
where P = (Fo2 + 2Fc2)/3
6694 reflections(Δ/σ)max = 0.003
535 parametersΔρmax = 0.83 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C8H3NO6)(C10H8N2)(H2O)]V = 3649.6 (7) Å3
Mr = 446.85Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.1326 (10) ŵ = 1.25 mm1
b = 23.263 (3) ÅT = 293 K
c = 15.6087 (15) Å0.12 × 0.10 × 0.08 mm
β = 97.28 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5089 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.907Rint = 0.025
18862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.83 e Å3
6694 reflectionsΔρmin = 0.40 e Å3
535 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.16168 (4)0.154431 (15)0.85573 (3)0.02711 (13)
Cu20.12372 (4)0.354405 (16)0.93350 (3)0.03053 (13)
C11.1959 (4)0.07213 (16)1.0079 (2)0.0457 (9)
H11.21450.10481.04160.055*
C21.2039 (5)0.0193 (2)1.0471 (3)0.0635 (13)
H21.22680.01611.10650.076*
C31.1773 (5)0.02890 (18)0.9970 (3)0.0634 (13)
H31.18100.06511.02240.076*
C41.1452 (4)0.02334 (16)0.9089 (3)0.0481 (10)
H41.12820.05560.87410.058*
C51.1388 (3)0.03117 (13)0.8732 (2)0.0291 (7)
C61.1072 (3)0.04138 (13)0.7785 (2)0.0266 (7)
C71.0796 (3)0.00183 (15)0.7180 (2)0.0376 (8)
H71.07880.04010.73540.045*
C81.0527 (4)0.01249 (16)0.6306 (2)0.0408 (9)
H81.03280.01600.58910.049*
C91.0562 (4)0.06932 (16)0.6068 (2)0.0415 (9)
H91.03830.08000.54910.050*
C101.0866 (3)0.11017 (14)0.6700 (2)0.0337 (8)
H101.08890.14860.65360.040*
C110.3761 (3)0.19406 (14)0.8105 (2)0.0284 (7)
C120.8756 (3)0.17568 (14)0.8380 (2)0.0286 (7)
C130.7500 (3)0.20954 (13)0.80617 (19)0.0232 (6)
C140.6258 (3)0.18759 (13)0.8202 (2)0.0252 (6)
H140.62130.15260.84840.030*
C150.5081 (3)0.21767 (13)0.79223 (19)0.0228 (6)
C160.5143 (3)0.27058 (14)0.7520 (2)0.0287 (7)
H160.43750.29120.73320.034*
C170.6391 (3)0.29176 (14)0.7409 (2)0.0300 (7)
C180.7573 (3)0.26273 (13)0.7665 (2)0.0268 (7)
H180.83880.27840.75740.032*
C190.0858 (4)0.43908 (16)0.7844 (3)0.0419 (9)
H190.07170.40660.74970.050*
C200.0710 (4)0.49282 (18)0.7464 (3)0.0506 (10)
H200.04930.49650.68690.061*
C210.0891 (4)0.54045 (17)0.7982 (3)0.0530 (11)
H210.08010.57700.77410.064*
C220.1206 (3)0.53393 (15)0.8859 (3)0.0437 (9)
H220.13120.56600.92170.052*
C230.1365 (3)0.47885 (13)0.9207 (2)0.0331 (8)
C240.1701 (3)0.46692 (14)1.0141 (2)0.0312 (7)
C250.1994 (4)0.50930 (15)1.0773 (3)0.0450 (10)
H250.19760.54801.06200.054*
C260.2313 (4)0.49311 (18)1.1632 (3)0.0505 (10)
H260.25020.52091.20590.061*
C270.2346 (4)0.43618 (19)1.1844 (3)0.0502 (10)
H270.25730.42451.24140.060*
C280.2036 (4)0.39641 (17)1.1200 (2)0.0423 (9)
H280.20480.35771.13480.051*
C290.4118 (3)0.33262 (14)0.9445 (2)0.0276 (7)
C300.5355 (3)0.29913 (13)0.9800 (2)0.0245 (7)
C310.6609 (3)0.31950 (13)0.9659 (2)0.0247 (6)
H310.66680.35290.93390.030*
C320.7773 (3)0.29078 (12)0.9988 (2)0.0230 (6)
C330.7701 (3)0.24090 (13)1.0462 (2)0.0281 (7)
H330.84660.22131.06870.034*
C340.6445 (3)0.22111 (13)1.0589 (2)0.0274 (7)
C350.5281 (3)0.24928 (14)1.0278 (2)0.0273 (7)
H350.44610.23501.03870.033*
C360.9110 (3)0.31370 (13)0.9804 (2)0.0265 (7)
N11.1618 (3)0.07821 (11)0.92194 (18)0.0308 (6)
N21.1133 (2)0.09711 (10)0.75448 (17)0.0256 (6)
N30.1197 (3)0.43222 (12)0.86995 (18)0.0310 (6)
N40.1716 (3)0.41090 (11)1.03653 (19)0.0315 (6)
N50.6350 (3)0.16771 (13)1.1080 (2)0.0421 (8)
N60.6481 (4)0.34942 (14)0.7038 (2)0.0526 (9)
O10.0918 (2)0.30549 (9)0.81941 (17)0.0320 (5)
O20.3006 (2)0.31188 (9)0.96166 (16)0.0358 (6)
O30.4241 (3)0.37683 (12)0.90419 (19)0.0532 (7)
O40.9139 (2)0.35925 (10)0.93797 (18)0.0392 (6)
O51.0167 (2)0.28721 (10)1.00723 (16)0.0360 (6)
O60.5265 (3)0.14511 (15)1.1064 (3)0.0852 (13)
O70.7369 (3)0.14842 (12)1.1487 (2)0.0579 (8)
O80.5457 (3)0.37104 (19)0.6687 (4)0.128 (2)
O90.7554 (3)0.37294 (13)0.7091 (2)0.0734 (10)
O100.9862 (2)0.19817 (9)0.82626 (16)0.0328 (5)
O110.8637 (3)0.12791 (13)0.8686 (2)0.0653 (9)
O121.1948 (2)0.20384 (9)0.97015 (16)0.0319 (5)
O130.2693 (2)0.22031 (10)0.78406 (16)0.0369 (6)
O140.3736 (2)0.14837 (10)0.85273 (17)0.0390 (6)
H1W1.245 (4)0.2303 (13)0.960 (3)0.080*
H2W1.132 (3)0.2151 (17)0.994 (3)0.080*
H3W0.157 (3)0.2969 (18)0.795 (3)0.080*
H4W0.042 (4)0.2781 (13)0.824 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0215 (2)0.0234 (2)0.0363 (2)0.00148 (15)0.00314 (16)0.00163 (15)
Cu20.0210 (2)0.0245 (2)0.0466 (3)0.00113 (15)0.00654 (18)0.00113 (16)
C10.065 (3)0.041 (2)0.031 (2)0.0004 (19)0.0076 (18)0.0047 (16)
C20.096 (4)0.060 (3)0.033 (2)0.006 (3)0.007 (2)0.014 (2)
C30.092 (4)0.040 (2)0.059 (3)0.004 (2)0.012 (3)0.031 (2)
C40.063 (3)0.0273 (18)0.053 (3)0.0023 (17)0.005 (2)0.0101 (16)
C50.0230 (16)0.0246 (16)0.0396 (19)0.0009 (12)0.0039 (14)0.0044 (13)
C60.0201 (15)0.0235 (15)0.0361 (18)0.0006 (12)0.0037 (13)0.0017 (13)
C70.0313 (18)0.0270 (17)0.054 (2)0.0024 (14)0.0052 (16)0.0048 (16)
C80.036 (2)0.043 (2)0.042 (2)0.0019 (16)0.0012 (16)0.0122 (16)
C90.041 (2)0.048 (2)0.034 (2)0.0023 (17)0.0006 (16)0.0037 (16)
C100.0362 (19)0.0319 (17)0.0323 (19)0.0054 (14)0.0015 (15)0.0049 (14)
C110.0197 (16)0.0332 (17)0.0332 (18)0.0034 (13)0.0071 (13)0.0116 (14)
C120.0172 (16)0.0347 (18)0.0332 (18)0.0028 (13)0.0008 (13)0.0056 (14)
C130.0147 (14)0.0287 (16)0.0257 (16)0.0017 (12)0.0008 (12)0.0000 (12)
C140.0219 (16)0.0261 (15)0.0283 (16)0.0010 (12)0.0054 (13)0.0006 (13)
C150.0156 (14)0.0280 (15)0.0252 (16)0.0013 (12)0.0041 (12)0.0061 (12)
C160.0173 (15)0.0372 (18)0.0314 (18)0.0093 (13)0.0027 (13)0.0019 (14)
C170.0269 (17)0.0298 (16)0.0343 (18)0.0035 (13)0.0078 (14)0.0110 (13)
C180.0156 (14)0.0337 (17)0.0314 (18)0.0016 (12)0.0039 (12)0.0049 (13)
C190.040 (2)0.040 (2)0.049 (2)0.0029 (16)0.0137 (17)0.0071 (17)
C200.043 (2)0.058 (3)0.052 (2)0.0069 (19)0.0135 (19)0.024 (2)
C210.040 (2)0.034 (2)0.088 (3)0.0026 (17)0.021 (2)0.027 (2)
C220.031 (2)0.0237 (17)0.078 (3)0.0018 (14)0.0160 (19)0.0050 (18)
C230.0160 (15)0.0232 (16)0.062 (2)0.0000 (12)0.0137 (15)0.0010 (15)
C240.0149 (15)0.0292 (17)0.051 (2)0.0005 (12)0.0090 (14)0.0043 (15)
C250.032 (2)0.0279 (18)0.077 (3)0.0019 (15)0.0121 (19)0.0106 (18)
C260.034 (2)0.059 (3)0.058 (3)0.0019 (18)0.0037 (19)0.021 (2)
C270.039 (2)0.064 (3)0.048 (2)0.0050 (19)0.0075 (18)0.006 (2)
C280.037 (2)0.043 (2)0.047 (2)0.0056 (17)0.0058 (17)0.0007 (17)
C290.0166 (15)0.0327 (17)0.0326 (18)0.0031 (13)0.0002 (13)0.0046 (14)
C300.0155 (15)0.0300 (16)0.0279 (17)0.0005 (12)0.0024 (12)0.0048 (12)
C310.0192 (15)0.0241 (15)0.0312 (17)0.0012 (12)0.0053 (12)0.0004 (12)
C320.0156 (15)0.0266 (15)0.0276 (16)0.0004 (11)0.0059 (12)0.0043 (12)
C330.0187 (15)0.0345 (17)0.0305 (18)0.0020 (13)0.0017 (13)0.0005 (13)
C340.0216 (16)0.0316 (16)0.0288 (17)0.0020 (13)0.0027 (13)0.0043 (13)
C350.0175 (15)0.0342 (17)0.0307 (18)0.0059 (13)0.0050 (13)0.0015 (13)
C360.0140 (15)0.0294 (16)0.0370 (18)0.0009 (12)0.0073 (13)0.0085 (14)
N10.0305 (15)0.0280 (14)0.0347 (16)0.0011 (11)0.0068 (12)0.0048 (11)
N20.0213 (13)0.0233 (13)0.0320 (15)0.0026 (10)0.0030 (11)0.0005 (11)
N30.0216 (14)0.0277 (14)0.0446 (18)0.0022 (11)0.0075 (12)0.0052 (12)
N40.0239 (14)0.0268 (14)0.0445 (18)0.0028 (11)0.0071 (12)0.0015 (12)
N50.0325 (17)0.0448 (18)0.0488 (19)0.0039 (14)0.0042 (14)0.0181 (14)
N60.044 (2)0.049 (2)0.068 (2)0.0143 (16)0.0185 (17)0.0321 (17)
O10.0243 (12)0.0261 (12)0.0455 (14)0.0024 (9)0.0044 (10)0.0001 (10)
O20.0148 (11)0.0301 (12)0.0621 (16)0.0023 (9)0.0033 (10)0.0029 (11)
O30.0327 (14)0.0511 (17)0.075 (2)0.0086 (12)0.0035 (13)0.0290 (15)
O40.0241 (12)0.0291 (12)0.0669 (17)0.0021 (9)0.0153 (12)0.0085 (11)
O50.0157 (11)0.0366 (12)0.0564 (16)0.0029 (9)0.0072 (10)0.0003 (11)
O60.0464 (19)0.086 (2)0.116 (3)0.0290 (17)0.0150 (19)0.065 (2)
O70.0401 (16)0.0511 (17)0.083 (2)0.0105 (13)0.0080 (15)0.0336 (15)
O80.046 (2)0.117 (3)0.226 (5)0.037 (2)0.036 (3)0.131 (4)
O90.061 (2)0.0534 (18)0.102 (3)0.0163 (16)0.0027 (19)0.0388 (18)
O100.0121 (10)0.0274 (11)0.0583 (15)0.0017 (8)0.0015 (10)0.0021 (10)
O110.0313 (15)0.0648 (19)0.101 (2)0.0135 (13)0.0130 (15)0.0564 (18)
O120.0267 (12)0.0261 (11)0.0415 (14)0.0039 (9)0.0003 (10)0.0027 (10)
O130.0157 (11)0.0404 (13)0.0550 (16)0.0031 (10)0.0066 (10)0.0012 (11)
O140.0223 (12)0.0378 (14)0.0583 (16)0.0027 (10)0.0103 (11)0.0048 (11)
Geometric parameters (Å, º) top
Cu1—O102.049 (2)C19—N31.345 (5)
Cu1—N12.052 (3)C19—C201.384 (5)
Cu1—N22.078 (3)C19—H190.9300
Cu1—O122.115 (2)C20—C211.371 (6)
Cu1—O14i2.158 (2)C20—H200.9300
Cu1—O13i2.258 (2)C21—C221.374 (6)
Cu2—O22.046 (2)C21—H210.9300
Cu2—N32.062 (3)C22—C231.393 (5)
Cu2—N42.086 (3)C22—H220.9300
Cu2—O12.104 (2)C23—N31.341 (4)
Cu2—O4ii2.139 (2)C23—C241.481 (5)
Cu2—O5ii2.294 (2)C24—N41.349 (4)
C1—N11.350 (5)C24—C251.400 (5)
C1—C21.372 (6)C25—C261.391 (6)
C1—H10.9300C25—H250.9300
C2—C31.373 (6)C26—C271.364 (6)
C2—H20.9300C26—H260.9300
C3—C41.379 (6)C27—C281.373 (6)
C3—H30.9300C27—H270.9300
C4—C51.383 (5)C28—N41.346 (5)
C4—H40.9300C28—H280.9300
C5—N11.337 (4)C29—O31.220 (4)
C5—C61.491 (5)C29—O21.284 (4)
C6—N21.353 (4)C29—C301.520 (4)
C6—C71.383 (5)C30—C351.386 (4)
C7—C81.398 (5)C30—C311.400 (4)
C7—H70.9300C31—C321.395 (4)
C8—C91.375 (5)C31—H310.9300
C8—H80.9300C32—C331.382 (4)
C9—C101.375 (5)C32—C361.518 (4)
C9—H90.9300C33—C341.391 (4)
C10—N21.347 (4)C33—H330.9300
C10—H100.9300C34—C351.383 (4)
C11—O141.253 (4)C34—N51.470 (4)
C11—O131.265 (4)C35—H350.9300
C11—C151.506 (4)C36—O41.252 (4)
C12—O111.222 (4)C36—O51.260 (4)
C12—O101.271 (4)N5—O61.216 (4)
C12—C131.525 (4)N5—O71.226 (4)
C13—C181.390 (4)N6—O91.211 (4)
C13—C141.401 (4)N6—O81.218 (4)
C14—C151.404 (4)O1—H3W0.83 (3)
C14—H140.9300O1—H4W0.82 (3)
C15—C161.387 (4)O4—Cu2i2.139 (2)
C16—C171.388 (5)O5—Cu2i2.294 (2)
C16—H160.9300O12—H1W0.82 (4)
C17—C181.389 (4)O12—H2W0.82 (4)
C17—N61.468 (4)O13—Cu1ii2.258 (2)
C18—H180.9300O14—Cu1ii2.158 (2)
O10—Cu1—N1119.16 (10)N3—C19—C20122.2 (4)
O10—Cu1—N291.92 (10)N3—C19—H19118.9
N1—Cu1—N279.26 (10)C20—C19—H19118.9
O10—Cu1—O1287.71 (9)C21—C20—C19118.5 (4)
N1—Cu1—O1293.12 (10)C21—C20—H20120.7
N2—Cu1—O12171.06 (10)C19—C20—H20120.7
O10—Cu1—O14i149.84 (9)C20—C21—C22119.7 (3)
N1—Cu1—O14i90.99 (10)C20—C21—H21120.1
N2—Cu1—O14i94.65 (10)C22—C21—H21120.1
O12—Cu1—O14i90.11 (10)C21—C22—C23119.4 (4)
O10—Cu1—O13i90.66 (9)C21—C22—H22120.3
N1—Cu1—O13i150.04 (10)C23—C22—H22120.3
N2—Cu1—O13i98.11 (10)N3—C23—C22120.9 (4)
O12—Cu1—O13i90.83 (9)N3—C23—C24115.2 (3)
O14i—Cu1—O13i59.29 (8)C22—C23—C24123.8 (3)
O2—Cu2—N3119.41 (10)N4—C24—C25120.2 (3)
O2—Cu2—N491.57 (10)N4—C24—C23115.5 (3)
N3—Cu2—N478.83 (11)C25—C24—C23124.3 (3)
O2—Cu2—O187.52 (9)C26—C25—C24119.4 (4)
N3—Cu2—O194.37 (10)C26—C25—H25120.3
N4—Cu2—O1171.62 (10)C24—C25—H25120.3
O2—Cu2—O4ii149.99 (9)C27—C26—C25119.5 (4)
N3—Cu2—O4ii90.60 (9)C27—C26—H26120.3
N4—Cu2—O4ii94.38 (10)C25—C26—H26120.3
O1—Cu2—O4ii90.54 (10)C26—C27—C28118.7 (4)
O2—Cu2—O5ii91.14 (9)C26—C27—H27120.6
N3—Cu2—O5ii149.09 (9)C28—C27—H27120.6
N4—Cu2—O5ii96.95 (10)N4—C28—C27123.0 (4)
O1—Cu2—O5ii91.40 (9)N4—C28—H28118.5
O4ii—Cu2—O5ii58.96 (8)C27—C28—H28118.5
N1—C1—C2122.1 (4)O3—C29—O2125.0 (3)
N1—C1—H1119.0O3—C29—C30119.1 (3)
C2—C1—H1119.0O2—C29—C30115.9 (3)
C1—C2—C3118.7 (4)C35—C30—C31118.7 (3)
C1—C2—H2120.6C35—C30—C29121.8 (3)
C3—C2—H2120.6C31—C30—C29119.5 (3)
C2—C3—C4119.7 (4)C32—C31—C30121.5 (3)
C2—C3—H3120.1C32—C31—H31119.3
C4—C3—H3120.1C30—C31—H31119.3
C3—C4—C5118.8 (4)C33—C32—C31120.0 (3)
C3—C4—H4120.6C33—C32—C36120.3 (3)
C5—C4—H4120.6C31—C32—C36119.7 (3)
N1—C5—C4121.7 (3)C32—C33—C34117.7 (3)
N1—C5—C6115.7 (3)C32—C33—H33121.1
C4—C5—C6122.6 (3)C34—C33—H33121.1
N2—C6—C7121.3 (3)C35—C34—C33123.2 (3)
N2—C6—C5114.6 (3)C35—C34—N5118.3 (3)
C7—C6—C5124.1 (3)C33—C34—N5118.4 (3)
C6—C7—C8119.4 (3)C34—C35—C30118.9 (3)
C6—C7—H7120.3C34—C35—H35120.5
C8—C7—H7120.3C30—C35—H35120.5
C9—C8—C7118.9 (3)O4—C36—O5121.0 (3)
C9—C8—H8120.5O4—C36—C32118.6 (3)
C7—C8—H8120.5O5—C36—C32120.4 (3)
C8—C9—C10118.8 (3)O4—C36—Cu2i57.03 (16)
C8—C9—H9120.6O5—C36—Cu2i64.09 (16)
C10—C9—H9120.6C32—C36—Cu2i174.0 (2)
N2—C10—C9123.0 (3)C5—N1—C1119.0 (3)
N2—C10—H10118.5C5—N1—Cu1115.6 (2)
C9—C10—H10118.5C1—N1—Cu1125.1 (2)
O14—C11—O13120.5 (3)C10—N2—C6118.5 (3)
O14—C11—C15119.1 (3)C10—N2—Cu1126.8 (2)
O13—C11—C15120.4 (3)C6—N2—Cu1114.8 (2)
O14—C11—Cu1ii58.05 (16)C23—N3—C19119.2 (3)
O13—C11—Cu1ii62.60 (17)C23—N3—Cu2115.6 (2)
C15—C11—Cu1ii174.8 (2)C19—N3—Cu2124.6 (2)
O11—C12—O10124.3 (3)C28—N4—C24119.1 (3)
O11—C12—C13118.5 (3)C28—N4—Cu2126.4 (2)
O10—C12—C13117.1 (3)C24—N4—Cu2114.5 (2)
C18—C13—C14119.6 (3)O6—N5—O7123.5 (3)
C18—C13—C12121.0 (3)O6—N5—C34118.3 (3)
C14—C13—C12119.4 (3)O7—N5—C34118.2 (3)
C13—C14—C15121.0 (3)O9—N6—O8123.4 (3)
C13—C14—H14119.5O9—N6—C17119.1 (3)
C15—C14—H14119.5O8—N6—C17117.6 (4)
C16—C15—C14119.8 (3)Cu2—O1—H3W118 (3)
C16—C15—C11120.1 (3)Cu2—O1—H4W112 (3)
C14—C15—C11120.0 (3)H3W—O1—H4W113 (4)
C15—C16—C17117.8 (3)C29—O2—Cu2122.8 (2)
C15—C16—H16121.1C36—O4—Cu2i93.58 (18)
C17—C16—H16121.1C36—O5—Cu2i86.30 (19)
C16—C17—C18123.9 (3)C12—O10—Cu1121.3 (2)
C16—C17—N6118.4 (3)Cu1—O12—H1W106 (3)
C18—C17—N6117.6 (3)Cu1—O12—H2W121 (3)
C13—C18—C17117.9 (3)H1W—O12—H2W112 (4)
C13—C18—H18121.0C11—O13—Cu1ii87.6 (2)
C17—C18—H18121.0C11—O14—Cu1ii92.45 (19)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1W···O2i0.83 (4)1.98 (2)2.742 (3)153 (4)
O1—H4W···O10ii0.82 (3)1.95 (2)2.724 (3)158 (4)
O12—H2W···O50.82 (4)2.07 (3)2.760 (3)141 (4)
O1—H3W···O130.83 (3)2.13 (3)2.778 (3)135 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H3NO6)(C10H8N2)(H2O)]
Mr446.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.1326 (10), 23.263 (3), 15.6087 (15)
β (°) 97.28 (2)
V3)3649.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.865, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
18862, 6694, 5089
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.00
No. of reflections6694
No. of parameters535
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1W···O2i0.83 (4)1.98 (2)2.742 (3)153 (4)
O1—H4W···O10ii0.82 (3)1.95 (2)2.724 (3)158 (4)
O12—H2W···O50.82 (4)2.07 (3)2.760 (3)141 (4)
O1—H3W···O130.83 (3)2.13 (3)2.778 (3)135 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Found­ation of Shandong Province (grant No. Y2007D39).

References

First citationBruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds