organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Nitro­phen­yl)diazen­yl]phenyl anthracene-9-carboxyl­ate

aPO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, bDepartment of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA, cPO Box 969, MS 9403, Sandia National Laboratories, Livermore, California 94551, USA, and dPO Box 969, MS 9161, Sandia National Laboratories, Livermore, California 94551, USA
*Correspondence e-mail: marodri@sandia.gov

(Received 24 October 2008; accepted 27 October 2008; online 8 November 2008)

In the title compound, C27H17N3O4, the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitro­benzene rings are 82.94 (7) and 7.30 (9)°, respectively. In the crystal structure, weak C—H⋯O hydrogen bonds, likely associated with a dipole moment present on the mol­ecule, help to consolidate the packing.

Related literature

This structure is similar to the perviously reported compound (E)-2-{Eth­yl[4-(4-nitro­phenyl­diazen­yl)phen­yl]amino}ethyl anthracene-9-carboxyl­ate (Rodriguez, et al., 2008[Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595.]). For general background, see: Atassi et al. (1998[Atassi, Y., Chauvin, J., Delaire, J. A., Delouis, J. F., Fanton-Maltey, I. & Nakatani, K. (1998). Pure Appl. Chem. 70, 2157-2166.]); Becke (1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]).

[Scheme 1]

Experimental

Crystal data
  • C27H17N3O4

  • Mr = 447.44

  • Monoclinic, P 21 /c

  • a = 13.525 (2) Å

  • b = 8.6011 (14) Å

  • c = 18.956 (3) Å

  • β = 109.322 (3)°

  • V = 2080.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • 0.20 × 0.18 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.995

  • 14511 measured reflections

  • 3665 independent reflections

  • 2752 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.03

  • 3665 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.95 2.54 3.273 (3) 134
C17—H17⋯O4ii 0.95 2.57 3.509 (3) 169
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, XSHELL and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2001[Bruker (2001). SMART, XSHELL and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XSHELL (Bruker, 2001[Bruker (2001). SMART, XSHELL and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Atassi et al. (1998) has documented photoisomerization of the azobenzene in Disperse Red 1 (DR1) to a cis conformation under UV light, with decay back to the equilibrium trans species with removal of the UV light. In this manuscript we present another compound, (I), containing a trans azobenzene conformational state (Fig. 1). The displacement ellipsoids for most of the atoms are well defined. However, the O1 and O2 atoms at the termination of the nitroazobenzene unit do show subtle enlargement.

Figure 2 shows a packing arrangement and intermolecular interactions for (I). The nitroazobenzene portion is nearly planar as is the anthracene portion of the molecule. The anthracene is rotated from the nitroazobenzene through the carboxyl group. The title compound displays a head-to-toe configuration via weak C—H···O bonds as shown in Figure 2. Specifically, an O2 atom of one molecule makes a weak bond to H26 of the neighboring molecule with a bond length of 2.55 Å. The calculated dipole moment for a molecule of (I) is 7.6806 Debye using the B3LYP functional (Becke, 1993) with the 6–311 G(d,p) triple-zeta basis. This dipole moment likely drives the head-to-toe alignment of the molecules as illustrated in Figure 2.

The structure of (I) is similar in form to that of the previously reported ester (E)-2-{ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate (Rodriguez, et al., 2008), with the subtle difference relating to the absence of the ethyl-amino ligand in (I). As with the aformentioned compound, intermolecular interactions for the title compound are exclusively C—H···O in nature (Table 2). An additional interaction which bridges molecules in the a axis direction is also shown in Figure 2. This weak hydrogen bond is between the terminal carboxyl oxygen O4 and the neighboring H17 atom. The hydrogen bond shows a length of 2.57 Å and symmetrically bonds the two H atoms of the anthracene of each molecule.

Related literature top

This structure is similar to the perviously reported compound (E)-2-{Ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate (Rodriguez, et al., 2008). For background, see: Atassi et al. (1998); Becke (1993).

Experimental top

The title compound was synthesized from 9-anthracenecarboxylic acid and 4-(4-nitrophenyl)azophenol via a dicyclohexylcarbodiimide esterification in anhydrous dichloromethane. After filtration of insoluble side products and removal of solvent by rotary evaporation, the crude product was dissolved in dichloromethane and filtered through a silica gel plug. Evaporation of the solvent gave a red powder that was characterized by 1H-NMR, UV/Vis and FTIR. Red crystals of (I) were obtained by recrystallization from hot dichloromethane.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of (I) illustrating weak C—H···O hydrogen-bond interactions associated with terminal oxygen atoms O2 and O4.
(E)-4-[(4-Nitrophenyl)diazenyl]phenyl anthracene-9-carboxylate top
Crystal data top
C27H17N3O4F(000) = 928
Mr = 447.44Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 100 reflections
a = 13.525 (2) Åθ = 1.6–25.0°
b = 8.6011 (14) ŵ = 0.10 mm1
c = 18.956 (3) ÅT = 173 K
β = 109.322 (3)°Plate, red
V = 2080.9 (6) Å30.20 × 0.18 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3665 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1010
Tmin = 0.980, Tmax = 0.995l = 2122
14511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7361P]
where P = (Fo2 + 2Fc2)/3
3665 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H17N3O4V = 2080.9 (6) Å3
Mr = 447.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.525 (2) ŵ = 0.10 mm1
b = 8.6011 (14) ÅT = 173 K
c = 18.956 (3) Å0.20 × 0.18 × 0.05 mm
β = 109.322 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3665 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2752 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.038
14511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3665 reflectionsΔρmin = 0.16 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s, except the e.s.d. in the dihedral angle between two least-square (l.s.) planes, are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69229 (14)1.52655 (19)0.65761 (9)0.0352 (4)
N20.44775 (13)1.12430 (19)0.43308 (9)0.0350 (4)
N30.48826 (13)1.08369 (18)0.38663 (9)0.0333 (4)
O10.78660 (13)1.5368 (2)0.66951 (9)0.0581 (5)
O20.64573 (13)1.60250 (18)0.69126 (8)0.0486 (4)
O30.26778 (10)0.69438 (15)0.15211 (7)0.0304 (3)
O40.10043 (11)0.77469 (17)0.12517 (8)0.0416 (4)
C10.63159 (15)1.4180 (2)0.59981 (10)0.0272 (4)
C20.52768 (15)1.3952 (2)0.59086 (11)0.0322 (5)
H20.49571.44760.62180.039*
C30.47087 (16)1.2945 (2)0.53590 (11)0.0334 (5)
H30.39931.27490.52950.040*
C40.51755 (15)1.2218 (2)0.49006 (10)0.0289 (5)
C50.62352 (16)1.2433 (2)0.50109 (11)0.0307 (5)
H50.65561.19070.47030.037*
C60.68173 (16)1.3411 (2)0.55702 (11)0.0304 (5)
H60.75451.35550.56600.037*
C70.42162 (15)0.9862 (2)0.32817 (10)0.0298 (5)
C80.31857 (16)0.9475 (2)0.31890 (11)0.0326 (5)
H80.28600.98740.35240.039*
C90.26266 (16)0.8502 (2)0.26061 (11)0.0316 (5)
H90.19240.82180.25430.038*
C100.31210 (15)0.7960 (2)0.21211 (10)0.0273 (4)
C110.41510 (15)0.8342 (2)0.22141 (11)0.0296 (5)
H110.44800.79490.18790.036*
C120.46943 (16)0.9293 (2)0.27953 (11)0.0318 (5)
H120.54010.95600.28620.038*
C130.16358 (15)0.6938 (2)0.11132 (11)0.0281 (4)
C140.14418 (14)0.5854 (2)0.04656 (10)0.0258 (4)
C150.09289 (14)0.6443 (2)0.02570 (11)0.0265 (4)
C160.05487 (14)0.8006 (2)0.04087 (12)0.0313 (5)
H160.06260.86990.00040.038*
C170.00814 (16)0.8515 (2)0.11171 (12)0.0383 (5)
H170.01590.95590.12010.046*
C180.00531 (17)0.7513 (3)0.17329 (12)0.0426 (6)
H180.03910.78820.22270.051*
C190.02967 (16)0.6035 (2)0.16205 (12)0.0381 (5)
H190.02060.53750.20390.046*
C200.07981 (14)0.5446 (2)0.08895 (11)0.0287 (5)
C210.11527 (14)0.3921 (2)0.07705 (11)0.0296 (5)
H210.10700.32690.11910.036*
C220.16242 (14)0.3316 (2)0.00585 (11)0.0256 (4)
C230.19358 (15)0.1725 (2)0.00493 (12)0.0309 (5)
H230.18210.10690.03730.037*
C240.23912 (15)0.1134 (2)0.07422 (12)0.0345 (5)
H240.25970.00730.08030.041*
C250.25608 (15)0.2095 (2)0.13743 (12)0.0339 (5)
H250.28860.16770.18600.041*
C260.22641 (15)0.3615 (2)0.12975 (11)0.0312 (5)
H260.23760.42360.17320.037*
C270.17899 (14)0.4293 (2)0.05797 (11)0.0260 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0431 (11)0.0312 (10)0.0275 (10)0.0035 (8)0.0066 (8)0.0032 (8)
N20.0409 (10)0.0305 (10)0.0359 (10)0.0027 (8)0.0158 (9)0.0012 (8)
N30.0388 (10)0.0277 (9)0.0353 (10)0.0021 (8)0.0148 (9)0.0029 (8)
O10.0400 (10)0.0717 (12)0.0571 (11)0.0170 (9)0.0088 (8)0.0273 (9)
O20.0602 (11)0.0453 (9)0.0393 (9)0.0034 (8)0.0155 (8)0.0165 (8)
O30.0253 (7)0.0304 (8)0.0328 (8)0.0026 (6)0.0060 (6)0.0102 (6)
O40.0307 (8)0.0404 (9)0.0486 (9)0.0042 (7)0.0062 (7)0.0176 (7)
C10.0340 (11)0.0229 (10)0.0210 (10)0.0012 (8)0.0040 (9)0.0008 (8)
C20.0352 (12)0.0302 (11)0.0306 (11)0.0052 (9)0.0102 (9)0.0003 (9)
C30.0295 (11)0.0335 (11)0.0348 (12)0.0004 (9)0.0074 (9)0.0016 (9)
C40.0348 (12)0.0224 (10)0.0241 (10)0.0027 (9)0.0023 (9)0.0017 (8)
C50.0401 (12)0.0276 (11)0.0263 (11)0.0024 (9)0.0135 (9)0.0016 (9)
C60.0308 (11)0.0299 (11)0.0309 (11)0.0023 (9)0.0106 (9)0.0009 (9)
C70.0351 (12)0.0226 (10)0.0253 (11)0.0047 (9)0.0013 (9)0.0003 (8)
C80.0467 (13)0.0280 (11)0.0246 (11)0.0042 (9)0.0137 (10)0.0006 (9)
C90.0327 (12)0.0317 (11)0.0296 (11)0.0027 (9)0.0094 (9)0.0003 (9)
C100.0343 (11)0.0202 (10)0.0236 (10)0.0005 (8)0.0045 (9)0.0015 (8)
C110.0316 (11)0.0270 (10)0.0282 (11)0.0010 (9)0.0071 (9)0.0018 (9)
C120.0314 (11)0.0301 (11)0.0303 (11)0.0035 (9)0.0056 (9)0.0022 (9)
C130.0271 (11)0.0222 (10)0.0337 (11)0.0021 (8)0.0083 (9)0.0007 (9)
C140.0212 (10)0.0246 (10)0.0304 (11)0.0045 (8)0.0069 (8)0.0032 (8)
C150.0202 (10)0.0244 (10)0.0343 (11)0.0031 (8)0.0083 (9)0.0007 (9)
C160.0266 (11)0.0249 (10)0.0408 (13)0.0026 (8)0.0091 (9)0.0020 (9)
C170.0350 (12)0.0281 (11)0.0482 (14)0.0031 (9)0.0092 (11)0.0068 (10)
C180.0461 (14)0.0416 (13)0.0358 (13)0.0042 (11)0.0076 (11)0.0094 (10)
C190.0422 (13)0.0392 (13)0.0316 (12)0.0006 (10)0.0105 (10)0.0004 (10)
C200.0256 (10)0.0289 (11)0.0318 (11)0.0015 (8)0.0097 (9)0.0010 (9)
C210.0295 (11)0.0299 (11)0.0301 (11)0.0036 (9)0.0108 (9)0.0062 (9)
C220.0213 (10)0.0237 (10)0.0319 (11)0.0034 (8)0.0091 (9)0.0039 (8)
C230.0319 (11)0.0251 (10)0.0378 (12)0.0008 (9)0.0142 (10)0.0050 (9)
C240.0336 (12)0.0227 (10)0.0466 (14)0.0001 (9)0.0123 (10)0.0022 (10)
C250.0313 (11)0.0308 (11)0.0353 (12)0.0014 (9)0.0053 (9)0.0056 (9)
C260.0319 (11)0.0280 (11)0.0314 (12)0.0040 (9)0.0071 (9)0.0009 (9)
C270.0209 (10)0.0248 (10)0.0316 (11)0.0044 (8)0.0078 (8)0.0019 (8)
Geometric parameters (Å, º) top
N1—O11.223 (2)C12—H120.9500
N1—O21.223 (2)C13—C141.494 (3)
N1—C11.467 (2)C14—C151.409 (3)
N2—N31.231 (2)C14—C271.416 (3)
N2—C41.445 (2)C15—C161.434 (3)
N3—C71.443 (2)C15—C201.437 (3)
O3—C131.365 (2)C16—C171.354 (3)
O3—C101.402 (2)C16—H160.9500
O4—C131.196 (2)C17—C181.413 (3)
C1—C21.373 (3)C17—H170.9500
C1—C61.385 (3)C18—C191.349 (3)
C2—C31.377 (3)C18—H180.9500
C2—H20.9500C19—C201.420 (3)
C3—C41.381 (3)C19—H190.9500
C3—H30.9500C20—C211.389 (3)
C4—C51.391 (3)C21—C221.389 (3)
C5—C61.378 (3)C21—H210.9500
C5—H50.9500C22—C231.426 (3)
C6—H60.9500C22—C271.429 (3)
C7—C121.379 (3)C23—C241.352 (3)
C7—C81.387 (3)C23—H230.9500
C8—C91.393 (3)C24—C251.411 (3)
C8—H80.9500C24—H240.9500
C9—C101.384 (3)C25—C261.361 (3)
C9—H90.9500C25—H250.9500
C10—C111.385 (3)C26—C271.423 (3)
C11—C121.374 (3)C26—H260.9500
C11—H110.9500
O1—N1—O2123.42 (18)O3—C13—C14109.61 (15)
O1—N1—C1118.41 (17)C15—C14—C27121.42 (17)
O2—N1—C1118.17 (18)C15—C14—C13118.08 (16)
N3—N2—C4111.35 (17)C27—C14—C13120.48 (17)
N2—N3—C7113.66 (17)C14—C15—C16124.09 (18)
C13—O3—C10123.10 (14)C14—C15—C20118.80 (17)
C2—C1—C6122.62 (18)C16—C15—C20117.09 (17)
C2—C1—N1118.71 (17)C17—C16—C15121.37 (19)
C6—C1—N1118.67 (17)C17—C16—H16119.3
C1—C2—C3118.39 (19)C15—C16—H16119.3
C1—C2—H2120.8C16—C17—C18120.84 (19)
C3—C2—H2120.8C16—C17—H17119.6
C2—C3—C4120.25 (19)C18—C17—H17119.6
C2—C3—H3119.9C19—C18—C17120.1 (2)
C4—C3—H3119.9C19—C18—H18119.9
C3—C4—C5120.56 (18)C17—C18—H18119.9
C3—C4—N2114.30 (17)C18—C19—C20121.3 (2)
C5—C4—N2125.14 (18)C18—C19—H19119.3
C6—C5—C4119.65 (18)C20—C19—H19119.3
C6—C5—H5120.2C21—C20—C19121.55 (18)
C4—C5—H5120.2C21—C20—C15119.19 (18)
C5—C6—C1118.43 (18)C19—C20—C15119.26 (18)
C5—C6—H6120.8C22—C21—C20122.30 (18)
C1—C6—H6120.8C22—C21—H21118.8
C12—C7—C8120.27 (18)C20—C21—H21118.8
C12—C7—N3114.06 (17)C21—C22—C23121.17 (17)
C8—C7—N3125.67 (18)C21—C22—C27119.68 (17)
C7—C8—C9120.27 (18)C23—C22—C27119.15 (18)
C7—C8—H8119.9C24—C23—C22121.19 (19)
C9—C8—H8119.9C24—C23—H23119.4
C10—C9—C8118.32 (19)C22—C23—H23119.4
C10—C9—H9120.8C23—C24—C25119.90 (19)
C8—C9—H9120.8C23—C24—H24120.0
C9—C10—C11121.49 (18)C25—C24—H24120.0
C9—C10—O3125.30 (17)C26—C25—C24120.85 (19)
C11—C10—O3113.16 (16)C26—C25—H25119.6
C12—C11—C10119.47 (18)C24—C25—H25119.6
C12—C11—H11120.3C25—C26—C27121.29 (19)
C10—C11—H11120.3C25—C26—H26119.4
C11—C12—C7120.18 (19)C27—C26—H26119.4
C11—C12—H12119.9C14—C27—C26123.82 (17)
C7—C12—H12119.9C14—C27—C22118.54 (17)
O4—C13—O3123.49 (17)C26—C27—C22117.60 (17)
O4—C13—C14126.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.543.273 (3)134
C17—H17···O4ii0.952.573.509 (3)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC27H17N3O4
Mr447.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.525 (2), 8.6011 (14), 18.956 (3)
β (°) 109.322 (3)
V3)2080.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
14511, 3665, 2752
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.03
No. of reflections3665
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.16

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008), XSHELL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.543.273 (3)134
C17—H17···O4ii0.952.573.509 (3)169
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
 

Acknowledgements

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE—AC04–94 A L85000.

References

First citationAtassi, Y., Chauvin, J., Delaire, J. A., Delouis, J. F., Fanton-Maltey, I. & Nakatani, K. (1998). Pure Appl. Chem. 70, 2157–2166.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, XSHELL and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, o595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds