metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­phenyl­phospho­nium) di-μ-iodido-bis­[di­iodido­tellurate(II)]

aDepartment of Chemistry, P.O. Box 3000, FI-90014 University of Oulu, Finland
*Correspondence e-mail: raija.oilunkaniemi@oulu.fi

(Received 31 October 2008; accepted 1 November 2008; online 20 November 2008)

The structure of the title compound, (C24H20P)2[Te2I6], is composed of discrete PPh4+ cations and centrosymmetric [Te2I6]2− anions. The tellurium(II) atom shows a sligthly distorted square-planar TeI4 geometry and is coordinated to two bridging and two terminal iodine atoms. The planar [Te2I6]2− ions are isolated by the cations and no inter­molecular tellurium–halogen or halogen–halogen inter­actions are present.

Related literature

For a review of halidotellurate anions, see Krebs & Ahlers (1990[Krebs, B. & Ahlers, F. P. (1990). Adv. Inorg. Chem. 35, 235-317.]). For the structure of the [Te2I6]2− anion, see: Konu & Chivers (2006[Konu, J. & Chivers, T. (2006). Dalton Trans. pp. 3941-3946.]); Fujiwara et al. (2002[Fujiwara, M., Tajima, N., Imakubo, T., Tamura, M. & Kato, R. (2002). J. Solid State Chem. 168, 396-407.]). For related materials, see: Janickis et al. (2002[Janickis, V., Nečas, M., Novosad, J., Dušek, M. & Petříček, V. (2002). Acta Cryst. B58, 977-985.], 2003[Janickis, V., Herberhold, M. & Milius, W. (2003). Z. Anorg. Allg. Chem. 629, 29-34.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Te2I6]

  • Mr = 1695.34

  • Monoclinic, P 21 /n

  • a = 13.252 (3) Å

  • b = 14.494 (3) Å

  • c = 14.109 (3) Å

  • β = 107.48 (3)°

  • V = 2584.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 100 (2) K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.511, Tmax = 0.619

  • 23569 measured reflections

  • 5009 independent reflections

  • 4225 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.02

  • 5009 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Te1—I2 2.8103 (8)
Te1—I1 2.8590 (8)
Te1—I3 3.0676 (8)
Te1—I3i 3.2244 (8)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2008[Brandenburg, K. & Berndt, M. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I), [PPh4]2[Te2I6], consists of one tetraphenylphosphonium cation and half of the anion (Fig. 1). The tellurium atoms show a distorted square planar coordination geometry and are coordinated to two bridging and two terminal iodine atoms (Table 1). The terminal Te—I bond lengths of 2.8103 (8) Å and 2.8590 (8) Å as well as the bridging Te—I bond lengths of 3.0676 (8) Å and 3.2244 (8) Å can be compared to the corresponding Te—I bonds in [(Et3PO)2H]2[Te2I6] (Konu & Chivers, 2006) and (C10H8S8)2[Te2I6].3(C10H8S8) (Fujiwara et al. 2002). In [(Et3PO)2H]2[Te2I6] and (C10H8S8)2[Te2I6].3(C10H8S8) the anions are involved in interionic I···I interactions shorter than the van der Waals radii of two iodine atoms, whereas in the present compound intermolecular iodine-iodine contacts are absent. The planar [Te2I6]2- ions are isolated by the cations as shown in Fig. 2.

The present salt was obtained from the reaction mixture of PPh4Cl, KI, Te, TeI4, and I2 in acetonitrile. Corresponding reactions with selenium, tellurium and bromine containing starting materials have yielded interesting mixed-valence bromidotellurate(IV)-selenate(II) and -selenate(I) anions [for illustrative examples, see Janickis et al. (2002, 2003)].

Related literature top

For a review of halidotellurate anions, see Krebs & Ahlers (1990). For the structure of the [Te2I6]2- anion, see: Konu & Chivers (2006); Fujiwara et al. (2002). For related materials, see: Janickis et al. (2002, 2003).

Experimental top

The mixture of PPh4Cl (0.3750 g, 1.00 mmol), KI (0.2 g, 1 mmol), Te (0.1452 g, 1.14 mmol), TeI4 (0.3172 g, 0.50 mmol), and I2 (0.1274 g, 0.50 mmol) in 15 ml acetonitrile gave a grey precipitate and a dark red solution after refluxing 2 h. A mixture of crystals of (I) and PPh4I3 was isolated from the filtrate after subsequent concentration of the solution.

Refinement top

The H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at 50% probability (arbitrary spheres for the H atoms). The unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).
[Figure 2] Fig. 2. Space filling representations of the packing of the molecules.
Bis(tetraphenylphosphonium) di-µ-iodido-bis[diiodidotellurate(II)] top
Crystal data top
(C24H20P)2[Te2I6]F(000) = 1560
Mr = 1695.34Dx = 2.178 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4225 reflections
a = 13.252 (3) Åθ = 3.0–26.0°
b = 14.494 (3) ŵ = 4.81 mm1
c = 14.109 (3) ÅT = 100 K
β = 107.48 (3)°Plate, brown
V = 2584.8 (9) Å30.15 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD
diffractometer
5009 independent reflections
Radiation source: fine-focus sealed tube4225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ϕ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.511, Tmax = 0.619k = 1717
23569 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0555P)2 + 5.4856P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5009 reflectionsΔρmax = 1.09 e Å3
263 parametersΔρmin = 1.03 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00320 (19)
Crystal data top
(C24H20P)2[Te2I6]V = 2584.8 (9) Å3
Mr = 1695.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.252 (3) ŵ = 4.81 mm1
b = 14.494 (3) ÅT = 100 K
c = 14.109 (3) Å0.15 × 0.15 × 0.10 mm
β = 107.48 (3)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
5009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4225 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.619Rint = 0.103
23569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 1.09 e Å3
5009 reflectionsΔρmin = 1.03 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.39145 (3)0.49167 (2)0.59757 (3)0.02321 (13)
I10.18308 (3)0.56474 (3)0.56278 (3)0.02848 (14)
I20.39684 (3)0.41640 (3)0.78259 (3)0.03878 (15)
I30.61278 (3)0.41817 (3)0.61252 (3)0.02757 (13)
P10.32106 (11)0.11106 (9)0.54406 (10)0.0195 (3)
C110.2712 (4)0.0042 (4)0.5160 (4)0.0229 (12)
C120.3382 (5)0.0802 (4)0.5366 (5)0.0270 (13)
H120.41210.07180.56610.032*
C130.2973 (5)0.1679 (4)0.5144 (4)0.0316 (13)
H130.34320.21980.52950.038*
C140.1894 (5)0.1807 (4)0.4700 (4)0.0330 (14)
H140.16130.24110.45550.040*
C150.1229 (5)0.1046 (4)0.4470 (5)0.0304 (13)
H150.04960.11330.41460.036*
C160.1620 (5)0.0163 (4)0.4706 (4)0.0268 (12)
H160.11570.03530.45640.032*
C210.4391 (4)0.1058 (4)0.6475 (4)0.0216 (11)
C220.5306 (4)0.1552 (4)0.6471 (4)0.0268 (12)
H220.53060.19160.59110.032*
C230.6208 (5)0.1507 (4)0.7286 (5)0.0323 (14)
H230.68250.18410.72850.039*
C240.6208 (5)0.0973 (4)0.8100 (4)0.0305 (13)
H240.68290.09340.86520.037*
C250.5306 (5)0.0497 (4)0.8112 (4)0.0263 (12)
H250.53070.01440.86800.032*
C260.4407 (4)0.0530 (4)0.7304 (4)0.0223 (11)
H260.37960.01910.73140.027*
C310.3505 (4)0.1619 (4)0.4396 (4)0.0208 (11)
C320.3740 (4)0.2572 (4)0.4442 (4)0.0233 (11)
H320.37010.29260.49960.028*
C330.4029 (4)0.2990 (4)0.3680 (4)0.0268 (12)
H330.41930.36300.37110.032*
C340.4077 (4)0.2469 (4)0.2870 (4)0.0266 (12)
H340.42880.27520.23530.032*
C350.3818 (4)0.1534 (4)0.2808 (4)0.0267 (12)
H350.38340.11900.22400.032*
C360.3537 (4)0.1101 (4)0.3574 (4)0.0247 (12)
H360.33700.04620.35360.030*
C410.2233 (4)0.1829 (4)0.5724 (4)0.0221 (11)
C420.2246 (5)0.1973 (4)0.6707 (4)0.0301 (13)
H420.27660.16800.72350.036*
C430.1496 (5)0.2545 (4)0.6908 (5)0.0357 (15)
H430.15110.26520.75770.043*
C440.0728 (5)0.2959 (4)0.6140 (5)0.0314 (14)
H440.02190.33530.62810.038*
C450.0702 (5)0.2800 (4)0.5171 (5)0.0342 (14)
H450.01640.30780.46450.041*
C460.1445 (5)0.2242 (4)0.4954 (5)0.0296 (13)
H460.14210.21390.42820.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0210 (2)0.0221 (2)0.0260 (2)0.00164 (14)0.00639 (16)0.00285 (14)
I10.0232 (2)0.0348 (2)0.0277 (2)0.00469 (15)0.00807 (16)0.00166 (15)
I20.0337 (3)0.0505 (3)0.0295 (3)0.00871 (18)0.00551 (19)0.00788 (18)
I30.0228 (2)0.0278 (2)0.0317 (2)0.00296 (14)0.00762 (17)0.00327 (15)
P10.0181 (7)0.0196 (7)0.0205 (7)0.0006 (5)0.0053 (5)0.0005 (5)
C110.026 (3)0.027 (3)0.018 (3)0.002 (2)0.010 (2)0.002 (2)
C120.020 (3)0.029 (3)0.032 (3)0.002 (2)0.008 (3)0.003 (2)
C130.033 (3)0.033 (3)0.028 (3)0.007 (3)0.008 (3)0.004 (3)
C140.044 (4)0.025 (3)0.029 (3)0.009 (3)0.010 (3)0.000 (3)
C150.026 (3)0.031 (3)0.030 (3)0.004 (2)0.003 (2)0.004 (3)
C160.026 (3)0.022 (3)0.029 (3)0.002 (2)0.004 (2)0.002 (2)
C210.018 (3)0.020 (3)0.026 (3)0.001 (2)0.004 (2)0.003 (2)
C220.027 (3)0.024 (3)0.031 (3)0.006 (2)0.011 (2)0.003 (2)
C230.024 (3)0.035 (3)0.036 (3)0.006 (2)0.005 (3)0.001 (3)
C240.026 (3)0.035 (3)0.024 (3)0.007 (2)0.003 (2)0.003 (2)
C250.026 (3)0.027 (3)0.024 (3)0.006 (2)0.005 (2)0.002 (2)
C260.022 (3)0.024 (3)0.021 (3)0.004 (2)0.007 (2)0.003 (2)
C310.018 (3)0.023 (3)0.019 (3)0.001 (2)0.002 (2)0.002 (2)
C320.024 (3)0.022 (3)0.023 (3)0.001 (2)0.007 (2)0.004 (2)
C330.024 (3)0.024 (3)0.032 (3)0.002 (2)0.008 (2)0.005 (2)
C340.021 (3)0.035 (3)0.026 (3)0.004 (2)0.009 (2)0.011 (2)
C350.029 (3)0.027 (3)0.025 (3)0.005 (2)0.008 (2)0.002 (2)
C360.023 (3)0.020 (3)0.029 (3)0.000 (2)0.005 (2)0.002 (2)
C410.015 (3)0.023 (3)0.028 (3)0.001 (2)0.007 (2)0.001 (2)
C420.023 (3)0.046 (4)0.021 (3)0.006 (3)0.006 (2)0.002 (3)
C430.030 (3)0.037 (4)0.043 (4)0.000 (3)0.016 (3)0.009 (3)
C440.026 (3)0.028 (3)0.046 (4)0.001 (2)0.020 (3)0.003 (3)
C450.036 (3)0.030 (3)0.046 (4)0.013 (3)0.024 (3)0.016 (3)
C460.026 (3)0.037 (3)0.029 (3)0.000 (2)0.013 (3)0.004 (3)
Geometric parameters (Å, º) top
Te1—I22.8103 (8)C24—H240.9500
Te1—I12.8590 (8)C25—C261.380 (8)
Te1—I33.0676 (8)C25—H250.9500
Te1—I3i3.2244 (8)C26—H260.9500
I3—Te1i3.2244 (8)C31—C361.393 (8)
P1—C311.792 (6)C31—C321.414 (7)
P1—C211.793 (6)C32—C331.385 (8)
P1—C111.796 (6)C32—H320.9500
P1—C411.799 (5)C33—C341.386 (8)
C11—C121.389 (8)C33—H330.9500
C11—C161.407 (8)C34—C351.395 (8)
C12—C131.381 (8)C34—H340.9500
C12—H120.9500C35—C361.394 (8)
C13—C141.391 (9)C35—H350.9500
C13—H130.9500C36—H360.9500
C14—C151.387 (9)C41—C461.396 (8)
C14—H140.9500C41—C421.397 (8)
C15—C161.383 (8)C42—C431.387 (8)
C15—H150.9500C42—H420.9500
C16—H160.9500C43—C441.381 (9)
C21—C261.393 (8)C43—H430.9500
C21—C221.410 (8)C44—C451.377 (9)
C22—C231.390 (8)C44—H440.9500
C22—H220.9500C45—C461.378 (8)
C23—C241.383 (9)C45—H450.9500
C23—H230.9500C46—H460.9500
C24—C251.385 (9)
I2—Te1—I193.27 (3)C26—C25—C24120.5 (6)
I2—Te1—I392.54 (3)C26—C25—H25119.8
I1—Te1—I3174.091 (17)C24—C25—H25119.8
I2—Te1—I3i178.851 (17)C25—C26—C21120.2 (5)
I1—Te1—I3i86.73 (3)C25—C26—H26119.9
I3—Te1—I3i87.49 (3)C21—C26—H26119.9
Te1—I3—Te1i92.51 (3)C36—C31—C32120.2 (5)
C31—P1—C21109.5 (3)C36—C31—P1122.1 (4)
C31—P1—C11110.9 (2)C32—C31—P1117.6 (4)
C21—P1—C11108.2 (3)C33—C32—C31120.0 (5)
C31—P1—C41107.1 (3)C33—C32—H32120.0
C21—P1—C41110.8 (3)C31—C32—H32120.0
C11—P1—C41110.2 (3)C32—C33—C34119.6 (5)
C12—C11—C16120.1 (5)C32—C33—H33120.2
C12—C11—P1121.5 (4)C34—C33—H33120.2
C16—C11—P1118.5 (4)C33—C34—C35120.6 (5)
C13—C12—C11120.1 (6)C33—C34—H34119.7
C13—C12—H12120.0C35—C34—H34119.7
C11—C12—H12120.0C36—C35—C34120.5 (5)
C12—C13—C14120.3 (6)C36—C35—H35119.8
C12—C13—H13119.9C34—C35—H35119.8
C14—C13—H13119.9C31—C36—C35119.0 (5)
C15—C14—C13119.7 (6)C31—C36—H36120.5
C15—C14—H14120.2C35—C36—H36120.5
C13—C14—H14120.2C46—C41—C42119.5 (5)
C16—C15—C14120.9 (6)C46—C41—P1119.7 (4)
C16—C15—H15119.6C42—C41—P1120.8 (4)
C14—C15—H15119.6C43—C42—C41119.7 (6)
C15—C16—C11119.0 (5)C43—C42—H42120.1
C15—C16—H16120.5C41—C42—H42120.1
C11—C16—H16120.5C44—C43—C42120.2 (6)
C26—C21—C22119.2 (5)C44—C43—H43119.9
C26—C21—P1119.7 (4)C42—C43—H43119.9
C22—C21—P1121.1 (4)C45—C44—C43120.0 (6)
C23—C22—C21119.9 (5)C45—C44—H44120.0
C23—C22—H22120.0C43—C44—H44120.0
C21—C22—H22120.0C44—C45—C46120.8 (6)
C24—C23—C22119.9 (6)C44—C45—H45119.6
C24—C23—H23120.1C46—C45—H45119.6
C22—C23—H23120.1C45—C46—C41119.7 (6)
C23—C24—C25120.3 (5)C45—C46—H46120.1
C23—C24—H24119.9C41—C46—H46120.1
C25—C24—H24119.9
I2—Te1—I3—Te1i178.850 (17)P1—C21—C26—C25178.9 (4)
I3i—Te1—I3—Te1i0.0C21—P1—C31—C36107.5 (5)
C31—P1—C11—C1292.1 (5)C11—P1—C31—C3612.0 (5)
C21—P1—C11—C1228.1 (6)C41—P1—C31—C36132.3 (4)
C41—P1—C11—C12149.4 (5)C21—P1—C31—C3270.6 (5)
C31—P1—C11—C1686.9 (5)C11—P1—C31—C32169.9 (4)
C21—P1—C11—C16152.9 (4)C41—P1—C31—C3249.6 (5)
C41—P1—C11—C1631.6 (5)C36—C31—C32—C331.6 (8)
C16—C11—C12—C131.2 (9)P1—C31—C32—C33176.6 (4)
P1—C11—C12—C13179.8 (5)C31—C32—C33—C340.5 (8)
C11—C12—C13—C140.9 (9)C32—C33—C34—C351.2 (8)
C12—C13—C14—C150.7 (9)C33—C34—C35—C361.9 (8)
C13—C14—C15—C162.1 (9)C32—C31—C36—C350.9 (8)
C14—C15—C16—C111.8 (9)P1—C31—C36—C35177.1 (4)
C12—C11—C16—C150.2 (9)C34—C35—C36—C310.8 (8)
P1—C11—C16—C15178.9 (5)C31—P1—C41—C4636.7 (5)
C31—P1—C21—C26167.4 (4)C21—P1—C41—C46156.1 (4)
C11—P1—C21—C2646.3 (5)C11—P1—C41—C4684.1 (5)
C41—P1—C21—C2674.7 (5)C31—P1—C41—C42143.9 (5)
C31—P1—C21—C2213.4 (5)C21—P1—C41—C4224.5 (5)
C11—P1—C21—C22134.5 (4)C11—P1—C41—C4295.3 (5)
C41—P1—C21—C22104.6 (5)C46—C41—C42—C431.9 (9)
C26—C21—C22—C230.2 (8)P1—C41—C42—C43178.7 (5)
P1—C21—C22—C23179.4 (5)C41—C42—C43—C441.1 (9)
C21—C22—C23—C240.2 (9)C42—C43—C44—C450.4 (9)
C22—C23—C24—C251.1 (9)C43—C44—C45—C461.1 (9)
C23—C24—C25—C261.6 (9)C44—C45—C46—C410.3 (9)
C24—C25—C26—C211.2 (8)C42—C41—C46—C451.2 (9)
C22—C21—C26—C250.3 (8)P1—C41—C46—C45179.4 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Te2I6]
Mr1695.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.252 (3), 14.494 (3), 14.109 (3)
β (°) 107.48 (3)
V3)2584.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)4.81
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.511, 0.619
No. of measured, independent and
observed [I > 2σ(I)] reflections
23569, 5009, 4225
Rint0.103
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.03
No. of reflections5009
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 1.03

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Te1—I22.8103 (8)Te1—I33.0676 (8)
Te1—I12.8590 (8)Te1—I3i3.2244 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Academy of Finland is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujiwara, M., Tajima, N., Imakubo, T., Tamura, M. & Kato, R. (2002). J. Solid State Chem. 168, 396–407.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanickis, V., Herberhold, M. & Milius, W. (2003). Z. Anorg. Allg. Chem. 629, 29–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationJanickis, V., Nečas, M., Novosad, J., Dušek, M. & Petříček, V. (2002). Acta Cryst. B58, 977–985.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKonu, J. & Chivers, T. (2006). Dalton Trans. pp. 3941–3946.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, B. & Ahlers, F. P. (1990). Adv. Inorg. Chem. 35, 235–317.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds