organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N′-(1H-indol-2-ylmethyl­ene)hydrazinecarbodi­thio­ate ethanol hemisolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 November 2008; accepted 19 November 2008; online 26 November 2008)

In the crystal of the title compound, C17H15N3S2·0.5C2H6O, the mol­ecules are linked by a pair of N—Haliphatic⋯S hydrogen bonds across a center of inversion, forming a dimer. The ethanol solvent mol­ecule, which is statistically disordered about a crystallographic twofold rotation axis, accepts an N—Haromatic⋯O hydrogen bond; the hydr­oxy group of the solvent mol­ecule is not engaged in hydrogen bonding.

Related literature

For references to benzyl esters of hydrazinecarbodithioic acids, see: Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2430.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3S2·0.5C2H6O

  • Mr = 348.47

  • Monoclinic, C 2/c

  • a = 13.4225 (2) Å

  • b = 15.4088 (2) Å

  • c = 16.8120 (3) Å

  • β = 102.637 (1)°

  • V = 3392.90 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.954

  • 14302 measured reflections

  • 3897 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.03

  • 3897 reflections

  • 232 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯S2i 0.88 (1) 2.52 (1) 3.350 (1) 159 (2)
N3—H3n⋯O1 0.87 (1) 2.25 (1) 3.047 (3) 153 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: pubCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

For background references, see: Khaledi et al. (2008).

Related literature top

For references to benzyl esters of hydrazinecarbodithioic acids, see: Khaledi et al. (2008).

Experimental top

Indole-2-carbaldehyde (0.36 g, 2.5 mmol) and S-benzyldithiocarbazate (0.495 g, 2.5 mmol) were heated in ethanol (40 ml) for 3 h. The solution was set aside for the formation of yellow blocks of (I).

Refinement top

C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99 Å) and refined as riding with U(H) = 1.2–1.5 times Ueq(C). The amino and hydroxy H atoms were located in a difference map, and were refined with distance restraints of N–H = 0.88±0.01 and O–H = 0.84+_0.01 Å; their Uiso values were freely refined.

The ethanol molecule is statistically disordered about a two-fold axis: the O–C distance was restrained to 1.45±0.01 Å and the C–C distance to 1.50+_0.01 Å; the displacement factors of the two C atoms were restrained to be equal.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Only one orientation of the ethanol molecule is shown.
Benzyl N'-(1H-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate top
Crystal data top
C17H15N3S2·0.5C2H6OF(000) = 1464
Mr = 348.47Dx = 1.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5259 reflections
a = 13.4225 (2) Åθ = 2.5–28.3°
b = 15.4088 (2) ŵ = 0.32 mm1
c = 16.8120 (3) ÅT = 100 K
β = 102.637 (1)°Block, yellow
V = 3392.90 (9) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3897 independent reflections
Radiation source: fine-focus sealed tube3332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.924, Tmax = 0.954k = 1920
14302 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0411P)2 + 3.3308P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.35 e Å3
5 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H15N3S2·0.5C2H6OV = 3392.90 (9) Å3
Mr = 348.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.4225 (2) ŵ = 0.32 mm1
b = 15.4088 (2) ÅT = 100 K
c = 16.8120 (3) Å0.25 × 0.20 × 0.15 mm
β = 102.637 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3332 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.954Rint = 0.028
14302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0335 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3897 reflectionsΔρmin = 0.40 e Å3
232 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.58648 (3)0.69507 (2)0.36508 (2)0.01972 (10)
S20.56141 (3)0.50160 (2)0.38844 (2)0.02263 (11)
N10.48149 (10)0.62574 (8)0.46106 (8)0.0201 (3)
H1N0.4612 (15)0.5843 (10)0.4893 (11)0.036 (5)*
N20.45977 (10)0.71147 (8)0.47237 (8)0.0200 (3)
N30.39716 (10)0.88130 (8)0.48940 (8)0.0205 (3)
H3N0.4341 (14)0.8771 (13)0.4528 (10)0.039 (6)*
C10.72885 (12)0.71544 (9)0.27832 (9)0.0199 (3)
C20.83286 (12)0.71386 (11)0.31290 (10)0.0254 (3)
H20.86080.66710.34760.031*
C30.89612 (13)0.77961 (12)0.29733 (10)0.0297 (4)
H30.96710.77760.32120.036*
C40.85687 (13)0.84829 (11)0.24721 (10)0.0260 (3)
H40.90040.89370.23720.031*
C50.75366 (13)0.85010 (10)0.21189 (10)0.0242 (3)
H50.72630.89680.17700.029*
C60.68972 (12)0.78405 (9)0.22712 (10)0.0222 (3)
H60.61900.78580.20240.027*
C70.66018 (12)0.64525 (9)0.29845 (10)0.0211 (3)
H7A0.70110.59620.32640.025*
H7B0.61440.62320.24820.025*
C80.53949 (11)0.60480 (9)0.40842 (9)0.0180 (3)
C90.40256 (11)0.72590 (9)0.52304 (9)0.0203 (3)
H90.38110.67940.55240.024*
C100.37149 (11)0.81355 (9)0.53466 (9)0.0197 (3)
C110.31225 (12)0.84426 (9)0.58549 (9)0.0208 (3)
H110.28480.81110.62330.025*
C120.29954 (11)0.93534 (9)0.57094 (9)0.0192 (3)
C130.35401 (11)0.95615 (9)0.51045 (9)0.0197 (3)
C140.35929 (12)1.04048 (10)0.48156 (10)0.0246 (3)
H140.39601.05330.44070.030*
C150.30886 (13)1.10461 (10)0.51477 (10)0.0269 (4)
H150.31161.16280.49670.032*
C160.25378 (13)1.08549 (10)0.57456 (10)0.0259 (3)
H160.21961.13090.59600.031*
C170.24827 (12)1.00197 (10)0.60284 (10)0.0229 (3)
H170.21050.98970.64310.027*
O10.48913 (18)0.92618 (16)0.34417 (14)0.0289 (5)0.50
H1O0.5523 (10)0.922 (3)0.363 (3)0.045 (13)*0.50
C180.4709 (7)1.0002 (6)0.2875 (4)0.0472 (9)0.50
H18A0.39661.00990.26870.057*0.50
H18B0.50161.05330.31570.057*0.50
C190.5162 (7)0.9824 (6)0.2172 (4)0.0472 (9)0.50
H19A0.50441.03200.17980.071*0.50
H19B0.48470.93040.18880.071*0.50
H19C0.58980.97290.23600.071*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0245 (2)0.01412 (17)0.0230 (2)0.00081 (13)0.01047 (15)0.00013 (13)
S20.0342 (2)0.01388 (17)0.0233 (2)0.00028 (14)0.01385 (17)0.00209 (14)
N10.0271 (7)0.0148 (6)0.0210 (7)0.0021 (5)0.0108 (5)0.0004 (5)
N20.0225 (6)0.0171 (6)0.0203 (7)0.0026 (5)0.0042 (5)0.0024 (5)
N30.0223 (6)0.0210 (6)0.0204 (7)0.0009 (5)0.0092 (5)0.0024 (5)
C10.0255 (8)0.0185 (7)0.0183 (7)0.0008 (6)0.0104 (6)0.0024 (5)
C20.0261 (8)0.0299 (8)0.0217 (8)0.0038 (6)0.0082 (7)0.0082 (6)
C30.0207 (8)0.0439 (10)0.0241 (9)0.0035 (7)0.0045 (7)0.0074 (7)
C40.0293 (9)0.0299 (8)0.0202 (8)0.0086 (7)0.0087 (7)0.0026 (6)
C50.0316 (9)0.0207 (7)0.0204 (8)0.0001 (6)0.0062 (7)0.0028 (6)
C60.0229 (8)0.0213 (7)0.0222 (8)0.0002 (6)0.0044 (6)0.0009 (6)
C70.0258 (8)0.0179 (7)0.0221 (8)0.0001 (6)0.0110 (6)0.0025 (6)
C80.0199 (7)0.0170 (6)0.0169 (7)0.0003 (5)0.0031 (6)0.0001 (5)
C90.0224 (7)0.0199 (7)0.0182 (7)0.0022 (6)0.0038 (6)0.0003 (6)
C100.0199 (7)0.0209 (7)0.0178 (7)0.0013 (6)0.0028 (6)0.0012 (6)
C110.0242 (8)0.0206 (7)0.0181 (8)0.0021 (6)0.0057 (6)0.0003 (6)
C120.0184 (7)0.0217 (7)0.0164 (7)0.0012 (6)0.0014 (6)0.0025 (6)
C130.0187 (7)0.0209 (7)0.0190 (8)0.0007 (6)0.0032 (6)0.0043 (6)
C140.0281 (8)0.0227 (7)0.0235 (8)0.0033 (6)0.0066 (7)0.0018 (6)
C150.0333 (9)0.0183 (7)0.0270 (9)0.0001 (6)0.0017 (7)0.0020 (6)
C160.0265 (8)0.0234 (7)0.0262 (9)0.0053 (6)0.0020 (7)0.0082 (6)
C170.0224 (8)0.0263 (8)0.0203 (8)0.0030 (6)0.0057 (6)0.0046 (6)
O10.0238 (12)0.0401 (13)0.0217 (12)0.0033 (10)0.0026 (10)0.0035 (10)
C180.041 (2)0.050 (3)0.0478 (15)0.0096 (19)0.0033 (12)0.001 (2)
C190.041 (2)0.050 (3)0.0478 (15)0.0096 (19)0.0033 (12)0.001 (2)
Geometric parameters (Å, º) top
S1—C81.7506 (15)C9—C101.439 (2)
S1—C71.8187 (15)C9—H90.9500
S2—C81.6647 (14)C10—C111.372 (2)
N1—C81.3397 (19)C11—C121.428 (2)
N1—N21.3748 (16)C11—H110.9500
N1—H1N0.875 (9)C12—C171.406 (2)
N2—C91.285 (2)C12—C131.413 (2)
N3—C131.3713 (18)C13—C141.394 (2)
N3—C101.3792 (19)C14—C151.383 (2)
N3—H3N0.873 (9)C14—H140.9500
C1—C21.390 (2)C15—C161.403 (2)
C1—C61.392 (2)C15—H150.9500
C1—C71.507 (2)C16—C171.379 (2)
C2—C31.383 (2)C16—H160.9500
C2—H20.9500C17—H170.9500
C3—C41.383 (2)O1—C181.472 (8)
C3—H30.9500O1—H1O0.839 (10)
C4—C51.383 (2)C18—C191.469 (5)
C4—H40.9500C18—H18A0.9900
C5—C61.391 (2)C18—H18B0.9900
C5—H50.9500C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—H7A0.9900C19—H19C0.9800
C7—H7B0.9900
C8—S1—C7102.42 (7)C11—C10—N3109.34 (13)
C8—N1—N2119.62 (12)C11—C10—C9129.24 (14)
C8—N1—H1N118.6 (13)N3—C10—C9121.37 (14)
N2—N1—H1N121.7 (13)C10—C11—C12107.22 (13)
C9—N2—N1115.70 (13)C10—C11—H11126.4
C13—N3—C10108.88 (12)C12—C11—H11126.4
C13—N3—H3N125.6 (14)C17—C12—C13118.83 (14)
C10—N3—H3N125.5 (14)C17—C12—C11134.62 (15)
C2—C1—C6118.72 (14)C13—C12—C11106.55 (13)
C2—C1—C7120.08 (14)N3—C13—C14129.59 (14)
C6—C1—C7121.17 (14)N3—C13—C12108.01 (13)
C3—C2—C1120.66 (15)C14—C13—C12122.40 (14)
C3—C2—H2119.7C15—C14—C13117.29 (15)
C1—C2—H2119.7C15—C14—H14121.4
C4—C3—C2120.53 (15)C13—C14—H14121.4
C4—C3—H3119.7C14—C15—C16121.36 (15)
C2—C3—H3119.7C14—C15—H15119.3
C3—C4—C5119.29 (15)C16—C15—H15119.3
C3—C4—H4120.4C17—C16—C15121.27 (14)
C5—C4—H4120.4C17—C16—H16119.4
C4—C5—C6120.45 (15)C15—C16—H16119.4
C4—C5—H5119.8C16—C17—C12118.83 (15)
C6—C5—H5119.8C16—C17—H17120.6
C5—C6—C1120.35 (15)C12—C17—H17120.6
C5—C6—H6119.8C18—O1—H1O108 (3)
C1—C6—H6119.8C19—C18—O1109.7 (7)
C1—C7—S1106.10 (10)C19—C18—H18A109.7
C1—C7—H7A110.5O1—C18—H18A109.7
S1—C7—H7A110.5C19—C18—H18B109.7
C1—C7—H7B110.5O1—C18—H18B109.7
S1—C7—H7B110.5H18A—C18—H18B108.2
H7A—C7—H7B108.7C18—C19—H19A109.5
N1—C8—S2121.15 (11)C18—C19—H19B109.5
N1—C8—S1113.45 (10)H19A—C19—H19B109.5
S2—C8—S1125.40 (9)C18—C19—H19C109.5
N2—C9—C10119.03 (14)H19A—C19—H19C109.5
N2—C9—H9120.5H19B—C19—H19C109.5
C10—C9—H9120.5
C8—N1—N2—C9179.09 (14)N2—C9—C10—C11179.23 (16)
C6—C1—C2—C30.6 (2)N2—C9—C10—N33.6 (2)
C7—C1—C2—C3177.57 (15)N3—C10—C11—C120.47 (17)
C1—C2—C3—C40.2 (3)C9—C10—C11—C12176.97 (15)
C2—C3—C4—C50.8 (3)C10—C11—C12—C17179.98 (17)
C3—C4—C5—C60.6 (2)C10—C11—C12—C130.39 (17)
C4—C5—C6—C10.2 (2)C10—N3—C13—C14179.53 (16)
C2—C1—C6—C50.8 (2)C10—N3—C13—C120.12 (17)
C7—C1—C6—C5177.36 (14)C17—C12—C13—N3179.86 (13)
C2—C1—C7—S1106.98 (14)C11—C12—C13—N30.16 (16)
C6—C1—C7—S171.14 (16)C17—C12—C13—C140.4 (2)
C8—S1—C7—C1163.14 (11)C11—C12—C13—C14179.30 (14)
N2—N1—C8—S2176.00 (11)N3—C13—C14—C15179.11 (15)
N2—N1—C8—S13.72 (18)C12—C13—C14—C150.2 (2)
C7—S1—C8—N1179.96 (11)C13—C14—C15—C160.6 (2)
C7—S1—C8—S20.33 (12)C14—C15—C16—C170.3 (3)
N1—N2—C9—C10176.43 (13)C15—C16—C17—C120.3 (2)
C13—N3—C10—C110.38 (17)C13—C12—C17—C160.7 (2)
C13—N3—C10—C9177.30 (13)C11—C12—C17—C16178.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S2i0.88 (1)2.52 (1)3.350 (1)159 (2)
N3—H3n···O10.87 (1)2.25 (1)3.047 (3)153 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3S2·0.5C2H6O
Mr348.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)13.4225 (2), 15.4088 (2), 16.8120 (3)
β (°) 102.637 (1)
V3)3392.90 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14302, 3897, 3332
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.03
No. of reflections3897
No. of parameters232
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S2i0.88 (1)2.52 (1)3.350 (1)159 (2)
N3—H3n···O10.87 (1)2.25 (1)3.047 (3)153 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for funding this study (Science Fund grants 12–02-03–2031, 12–02-03–2051).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds