organic compounds
5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline
aCollege of Chemistry, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China, and bQingdao DIC Finechemicals Co. Ltd, Qingdao 266101, People's Republic of China
*Correspondence e-mail: lijiuming10@yahoo.cn
In the title compound, C16H13NO2, the two benzene rings make a dihedral angle of 55.5 (2)°. The crystal packing is stabilized by intermolecular C—H⋯O hydrogen bonds and weak π–π stacking interactions [centroid–centroid distance = 3.595 (3)Å], linking the molecules into ladders of inversion dimers.
Related literature
For details of the biological activities of isoquinolinone compounds, see: Bentley (2000); Jayaraman et al. (2002). For the Bischler–Napieralski reaction, see: Bischler & Napieralski (1893). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2004); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808035009/hg2432sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035009/hg2432Isup2.hkl
The title compound was synthesized by following Bischler-Napieralski procedures: 0.01 mol N-[2-(3, 4-methylenedioxy)phenyl]benzamide (synthesized by β-(3, 4-methylenedioxy)phenethylamine, Benzoyl chloride and Et3N) was dissolved in 20 ml CH3CN, 5 g POCl3 was added dropwise, the mixture was refluxed under N2 for 5 h, after cooled the volatiles were evaporated under vacuum, then water was added and adjusted the pH to 8, after extracted with CH2Cl2, the organic layers was washed with saturated NaCl and dried with Na2SO4, the product was isolated by evaporation of the solvent and recrystalization, 2.31 g, Yield: 92%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, with Uiso(H) = 1.2 times Ueq(C).
Data collection: RAPID-AUTO (Rigaku, 2004); cell
RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. |
C16H13NO2 | Z = 2 |
Mr = 251.27 | F(000) = 264 |
Triclinic, P1 | Dx = 1.340 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5005 (17) Å | Cell parameters from 1451 reflections |
b = 8.5297 (17) Å | θ = 2.5–23.4° |
c = 10.143 (2) Å | µ = 0.09 mm−1 |
α = 109.07 (3)° | T = 293 K |
β = 109.44 (2)° | Block, colorless |
γ = 99.70 (3)° | 0.28 × 0.10 × 0.08 mm |
V = 622.9 (2) Å3 |
Rigaku R-AXIS RAPID IP area-detector diffractometer | 2145 independent reflections |
Radiation source: Rotating Anode | 1275 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω oscillation scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.976, Tmax = 0.993 | k = −10→10 |
4801 measured reflections | l = −11→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1397P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2145 reflections | Δρmax = 0.20 e Å−3 |
173 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.048 (8) |
C16H13NO2 | γ = 99.70 (3)° |
Mr = 251.27 | V = 622.9 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.5005 (17) Å | Mo Kα radiation |
b = 8.5297 (17) Å | µ = 0.09 mm−1 |
c = 10.143 (2) Å | T = 293 K |
α = 109.07 (3)° | 0.28 × 0.10 × 0.08 mm |
β = 109.44 (2)° |
Rigaku R-AXIS RAPID IP area-detector diffractometer | 2145 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1275 reflections with I > 2σ(I) |
Tmin = 0.976, Tmax = 0.993 | Rint = 0.037 |
4801 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.20 e Å−3 |
2145 reflections | Δρmin = −0.20 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9151 (2) | 0.7157 (2) | 1.18121 (17) | 0.0688 (6) | |
O2 | 0.6920 (2) | 0.4574 (2) | 1.01260 (17) | 0.0656 (6) | |
N1 | 0.8054 (3) | 0.6182 (3) | 0.5069 (2) | 0.0638 (6) | |
C1 | 0.5553 (3) | 0.2889 (4) | 0.3031 (3) | 0.0614 (7) | |
H1B | 0.5296 | 0.3808 | 0.2795 | 0.074* | |
C2 | 0.4741 (4) | 0.1204 (4) | 0.1932 (3) | 0.0734 (8) | |
H2A | 0.3938 | 0.0996 | 0.0961 | 0.088* | |
C3 | 0.5097 (4) | −0.0172 (4) | 0.2247 (3) | 0.0772 (9) | |
H3A | 0.4550 | −0.1308 | 0.1496 | 0.093* | |
C4 | 0.6281 (4) | 0.0149 (4) | 0.3695 (3) | 0.0692 (8) | |
H4A | 0.6521 | −0.0779 | 0.3924 | 0.083* | |
C5 | 0.7107 (3) | 0.1825 (3) | 0.4798 (3) | 0.0579 (7) | |
H5A | 0.7914 | 0.2022 | 0.5765 | 0.069* | |
C6 | 0.6756 (3) | 0.3230 (3) | 0.4491 (2) | 0.0511 (6) | |
C7 | 0.7705 (3) | 0.5073 (3) | 0.5614 (2) | 0.0521 (6) | |
C8 | 0.9013 (4) | 0.7997 (3) | 0.6168 (3) | 0.0679 (8) | |
H8A | 0.8187 | 0.8570 | 0.6406 | 0.081* | |
H8B | 0.9573 | 0.8600 | 0.5702 | 0.081* | |
C9 | 1.0385 (4) | 0.8139 (3) | 0.7632 (3) | 0.0604 (7) | |
H9A | 1.1279 | 0.7664 | 0.7424 | 0.072* | |
H9B | 1.0943 | 0.9354 | 0.8351 | 0.072* | |
C10 | 0.9508 (3) | 0.7137 (3) | 0.8300 (2) | 0.0497 (6) | |
C11 | 0.8169 (3) | 0.5585 (3) | 0.7272 (2) | 0.0468 (6) | |
C12 | 0.7220 (3) | 0.4618 (3) | 0.7802 (2) | 0.0490 (6) | |
H12A | 0.6326 | 0.3575 | 0.7130 | 0.059* | |
C13 | 0.7659 (3) | 0.5266 (3) | 0.9336 (2) | 0.0492 (6) | |
C14 | 0.8994 (3) | 0.6795 (3) | 1.0347 (2) | 0.0510 (6) | |
C15 | 0.9955 (3) | 0.7752 (3) | 0.9871 (2) | 0.0525 (6) | |
H15A | 1.0871 | 0.8771 | 1.0566 | 0.063* | |
C16 | 0.7728 (4) | 0.5854 (4) | 1.1664 (3) | 0.0713 (8) | |
H16A | 0.8159 | 0.5318 | 1.2363 | 0.086* | |
H16B | 0.6882 | 0.6379 | 1.1918 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0833 (14) | 0.0751 (12) | 0.0399 (9) | 0.0155 (10) | 0.0240 (9) | 0.0202 (8) |
O2 | 0.0861 (14) | 0.0677 (11) | 0.0470 (10) | 0.0158 (10) | 0.0377 (9) | 0.0221 (9) |
N1 | 0.0805 (16) | 0.0671 (14) | 0.0497 (12) | 0.0199 (12) | 0.0329 (11) | 0.0267 (11) |
C1 | 0.0513 (15) | 0.0779 (18) | 0.0514 (15) | 0.0196 (13) | 0.0185 (12) | 0.0255 (14) |
C2 | 0.0562 (17) | 0.091 (2) | 0.0482 (15) | 0.0073 (15) | 0.0087 (12) | 0.0213 (15) |
C3 | 0.080 (2) | 0.0689 (18) | 0.0552 (16) | 0.0037 (16) | 0.0187 (14) | 0.0116 (14) |
C4 | 0.079 (2) | 0.0613 (16) | 0.0564 (16) | 0.0162 (14) | 0.0246 (14) | 0.0179 (13) |
C5 | 0.0633 (16) | 0.0625 (15) | 0.0404 (13) | 0.0169 (13) | 0.0184 (11) | 0.0168 (12) |
C6 | 0.0522 (15) | 0.0630 (15) | 0.0383 (12) | 0.0164 (12) | 0.0232 (10) | 0.0173 (11) |
C7 | 0.0588 (16) | 0.0615 (15) | 0.0433 (12) | 0.0229 (12) | 0.0272 (11) | 0.0221 (12) |
C8 | 0.087 (2) | 0.0622 (16) | 0.0626 (16) | 0.0183 (14) | 0.0396 (15) | 0.0296 (14) |
C9 | 0.0646 (17) | 0.0594 (15) | 0.0592 (15) | 0.0142 (12) | 0.0327 (13) | 0.0223 (12) |
C10 | 0.0498 (14) | 0.0533 (13) | 0.0471 (13) | 0.0170 (11) | 0.0226 (11) | 0.0190 (11) |
C11 | 0.0517 (14) | 0.0525 (13) | 0.0393 (12) | 0.0180 (11) | 0.0220 (10) | 0.0186 (10) |
C12 | 0.0533 (15) | 0.0522 (13) | 0.0427 (12) | 0.0180 (11) | 0.0221 (10) | 0.0178 (11) |
C13 | 0.0587 (15) | 0.0553 (14) | 0.0405 (12) | 0.0199 (11) | 0.0273 (11) | 0.0202 (11) |
C14 | 0.0596 (16) | 0.0587 (14) | 0.0359 (12) | 0.0255 (12) | 0.0197 (11) | 0.0178 (11) |
C15 | 0.0507 (14) | 0.0560 (14) | 0.0458 (13) | 0.0150 (11) | 0.0187 (11) | 0.0171 (11) |
C16 | 0.087 (2) | 0.0816 (19) | 0.0449 (14) | 0.0216 (16) | 0.0341 (14) | 0.0215 (14) |
O1—C14 | 1.370 (3) | C7—C11 | 1.481 (3) |
O1—C16 | 1.427 (3) | C8—C9 | 1.504 (4) |
O2—C13 | 1.381 (3) | C8—H8A | 0.9700 |
O2—C16 | 1.421 (3) | C8—H8B | 0.9700 |
N1—C7 | 1.283 (3) | C9—C10 | 1.499 (3) |
N1—C8 | 1.465 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.375 (4) | C9—H9B | 0.9700 |
C1—C6 | 1.391 (3) | C10—C11 | 1.391 (3) |
C1—H1B | 0.9300 | C10—C15 | 1.394 (3) |
C2—C3 | 1.368 (4) | C11—C12 | 1.406 (3) |
C2—H2A | 0.9300 | C12—C13 | 1.359 (3) |
C3—C4 | 1.380 (4) | C12—H12A | 0.9300 |
C3—H3A | 0.9300 | C13—C14 | 1.376 (3) |
C4—C5 | 1.372 (3) | C14—C15 | 1.364 (3) |
C4—H4A | 0.9300 | C15—H15A | 0.9300 |
C5—C6 | 1.387 (3) | C16—H16A | 0.9700 |
C5—H5A | 0.9300 | C16—H16B | 0.9700 |
C6—C7 | 1.487 (3) | ||
C14—O1—C16 | 105.44 (18) | C10—C9—C8 | 108.3 (2) |
C13—O2—C16 | 105.24 (18) | C10—C9—H9A | 110.0 |
C7—N1—C8 | 117.11 (19) | C8—C9—H9A | 110.0 |
C2—C1—C6 | 120.6 (3) | C10—C9—H9B | 110.0 |
C2—C1—H1B | 119.7 | C8—C9—H9B | 110.0 |
C6—C1—H1B | 119.7 | H9A—C9—H9B | 108.4 |
C3—C2—C1 | 120.9 (3) | C11—C10—C15 | 121.1 (2) |
C3—C2—H2A | 119.6 | C11—C10—C9 | 116.9 (2) |
C1—C2—H2A | 119.6 | C15—C10—C9 | 122.0 (2) |
C2—C3—C4 | 119.1 (3) | C10—C11—C12 | 120.3 (2) |
C2—C3—H3A | 120.5 | C10—C11—C7 | 117.7 (2) |
C4—C3—H3A | 120.5 | C12—C11—C7 | 121.8 (2) |
C5—C4—C3 | 120.5 (3) | C13—C12—C11 | 117.4 (2) |
C5—C4—H4A | 119.7 | C13—C12—H12A | 121.3 |
C3—C4—H4A | 119.7 | C11—C12—H12A | 121.3 |
C4—C5—C6 | 120.9 (2) | C12—C13—C14 | 121.9 (2) |
C4—C5—H5A | 119.6 | C12—C13—O2 | 128.3 (2) |
C6—C5—H5A | 119.6 | C14—C13—O2 | 109.77 (19) |
C5—C6—C1 | 118.0 (2) | C15—C14—O1 | 127.9 (2) |
C5—C6—C7 | 122.7 (2) | C15—C14—C13 | 122.1 (2) |
C1—C6—C7 | 119.0 (2) | O1—C14—C13 | 110.0 (2) |
N1—C7—C11 | 122.4 (2) | C14—C15—C10 | 117.2 (2) |
N1—C7—C6 | 116.7 (2) | C14—C15—H15A | 121.4 |
C11—C7—C6 | 120.8 (2) | C10—C15—H15A | 121.4 |
N1—C8—C9 | 112.5 (2) | O2—C16—O1 | 108.54 (19) |
N1—C8—H8A | 109.1 | O2—C16—H16A | 110.0 |
C9—C8—H8A | 109.1 | O1—C16—H16A | 110.0 |
N1—C8—H8B | 109.1 | O2—C16—H16B | 110.0 |
C9—C8—H8B | 109.1 | O1—C16—H16B | 110.0 |
H8A—C8—H8B | 107.8 | H16A—C16—H16B | 108.4 |
C6—C1—C2—C3 | −0.1 (4) | N1—C7—C11—C10 | −22.2 (4) |
C1—C2—C3—C4 | 0.5 (5) | C6—C7—C11—C10 | 159.5 (2) |
C2—C3—C4—C5 | −0.8 (5) | N1—C7—C11—C12 | 153.3 (3) |
C3—C4—C5—C6 | 0.9 (4) | C6—C7—C11—C12 | −25.0 (4) |
C4—C5—C6—C1 | −0.5 (4) | C10—C11—C12—C13 | 0.3 (4) |
C4—C5—C6—C7 | −175.7 (2) | C7—C11—C12—C13 | −175.0 (2) |
C2—C1—C6—C5 | 0.1 (4) | C11—C12—C13—C14 | −0.9 (4) |
C2—C1—C6—C7 | 175.6 (2) | C11—C12—C13—O2 | 179.4 (2) |
C8—N1—C7—C11 | 2.5 (4) | C16—O2—C13—C12 | −173.7 (3) |
C8—N1—C7—C6 | −179.1 (2) | C16—O2—C13—C14 | 6.5 (3) |
C5—C6—C7—N1 | 142.5 (3) | C16—O1—C14—C15 | 174.1 (3) |
C1—C6—C7—N1 | −32.7 (3) | C16—O1—C14—C13 | −5.3 (3) |
C5—C6—C7—C11 | −39.2 (3) | C12—C13—C14—C15 | 0.0 (4) |
C1—C6—C7—C11 | 145.6 (2) | O2—C13—C14—C15 | 179.8 (2) |
C7—N1—C8—C9 | 37.6 (3) | C12—C13—C14—O1 | 179.4 (2) |
N1—C8—C9—C10 | −56.4 (3) | O2—C13—C14—O1 | −0.8 (3) |
C8—C9—C10—C11 | 37.8 (3) | O1—C14—C15—C10 | −178.0 (2) |
C8—C9—C10—C15 | −139.8 (3) | C13—C14—C15—C10 | 1.3 (4) |
C15—C10—C11—C12 | 1.0 (4) | C11—C10—C15—C14 | −1.8 (4) |
C9—C10—C11—C12 | −176.6 (2) | C9—C10—C15—C14 | 175.7 (2) |
C15—C10—C11—C7 | 176.5 (2) | C13—O2—C16—O1 | −9.7 (3) |
C9—C10—C11—C7 | −1.1 (3) | C14—O1—C16—O2 | 9.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O2i | 0.93 | 2.55 | 3.465 (4) | 169 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H13NO2 |
Mr | 251.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5005 (17), 8.5297 (17), 10.143 (2) |
α, β, γ (°) | 109.07 (3), 109.44 (2), 99.70 (3) |
V (Å3) | 622.9 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.28 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP area-detector diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.976, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4801, 2145, 1275 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.144, 1.13 |
No. of reflections | 2145 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.20 |
Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O2i | 0.93 | 2.55 | 3.465 (4) | 168.9 |
Symmetry code: (i) −x+1, −y, −z+1. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bentley, K. B. (2000). Nat. Prod. Rep. 17, 247–268. Web of Science CrossRef PubMed CAS Google Scholar
Bischler, A. & Napieralski, B. (1893). Chem. Ber. 26, 1903. CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2002). J. Med. Chem. 44, 242–249. Web of Science CrossRef Google Scholar
Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isoquinolinones are important compounds from both the synthetic and applied points of view. Their structures are incorporated in several alkaloids (Bentley, 20000 and other pharmacologically important compounds (Jayaraman et al., 2002). Of the variety of methods that have been developed for the synthesis of the isoquinoline ring system, the most commonly used procedure is the Bischler-Napieralski reaction (Bischler & Napieralski, 1893). We now wish to report an effective Bischler-Napieralski procedure for the synthesis of 1,2,3,4-tetrahydro-6,7-dimethoxy-1-phenylisoquinoline the title compound (I) and report its crystal structure here.
In compound (I), all bond lengths in the molecular are normal (Allen et al., 1987). The benzene ring C10–C15 and bonded atoms C7, C9, O1 and O2 are coplanar, the largest deviation from the mean plane being 0.039 (2)Å for atom O1. The other benzene ring, C1–C6, and bonded atoms C7 are also coplanar, the largest deviation from the mean plane being 0.032 (2)Å. The two benzene rings make a dihedral angle of 55.5 (2)°.
The relatively short distance of 3.595 (3) between the centroids of benzene ring C10—C15 and 1,3-dioxole ring C13/C14/C16/O1/O2 [at -x,1 - y,-z] indicates the presence of weak π-π interactions, The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds, linking the molecules into ladders of dimers.