organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-r-(4-Chloro­phen­yl)-6-c-phenyl-3,4,5,6-tetra­hydro-2H-thio­pyran-4-one 1-oxide

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
*Correspondence e-mail: athiru@vsnl.net

(Received 10 November 2008; accepted 11 November 2008; online 20 November 2008)

The thio­pyran unit of the title mol­ecule, C17H15ClO2S, is in chair form. A crystallographic mirror plane bis­ects the mol­ecule, passing through the O=S and the opposite C=O atoms of the central ring, with statistical disorder of the Cl atom. The geometry around the S atom is tetra­hedral and the carbonyl C is planar. The 4-chloro­phenyl group at the 2 position and the phenyl ring at the 6 position have equatorial orientations. Inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are found in the crystal structure. In addition, there is a short O⋯C inter­molecular contact [2.970 (5) Å].

Related literature

For a related crystal structure, see: Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Pandiarajan, K. & Devanathan, D. (2007). Acta Cryst. E63, o4486.]). For applications of sulfoxides, see: Contreras et al. (1998[Contreras, J. G., Madariaga, S. T. & Alderete, J. B. (1998). J. Phys. Org. Chem. 11, 392-396.]); Hutton et al. (2002[Hutton, C. A., Jaber, R., Otaegui, M., Turnet, J. J., Turner, P., White, J. M. & Bacskay, G. B. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1066-1071.]); Okada & Tanaka (2002[Okada, K. & Tanaka, M. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2704-2711.]). For the conformational analysis of substituted thian-1-oxides, see: Freeman et al. (2001[Freeman, F., Nguyen, T. & Hehre, W. (2001). J. Mol. Struct. (THEOCHEM), 549, 203-216.]); Nagao et al. (1995[Nagao, Y., Goto, M., Kida, K. & Shiro, M. (1995). Heterocycles, 41, 419-424.]). For the anti­microbial activity of aliphatic, aromatic and cyclic sulfoxides, see: Ansel et al. (2006[Ansel, H. C., Norred, W. P. & Roth, I. L. (2006). J. Pharm. Sci. 58, 836-839.]); Ingold et al. (1999[Ingold, K., Bigler, P., Thormann, W., Cavaliero, T., Gottstein, B. & Hemphill, A. (1999). Antimicrob. Agents Chemother. 43, 1052-1061.]); Rouvier et al. (2004[Rouvier, C. S., Barret, J. M., Farrell, C. M., Sharples, D., Hill, B. T. & Barbe, J. (2004). Eur. J. Med. Chem. 39, 1029-1038.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO2S

  • Mr = 318.81

  • Orthorhombic, P n m a

  • a = 11.5195 (5) Å

  • b = 25.7589 (12) Å

  • c = 5.2248 (2) Å

  • V = 1550.35 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 (2) K

  • 0.58 × 0.35 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 0.945

  • 33450 measured reflections

  • 1954 independent reflections

  • 1551 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.211

  • S = 1.20

  • 1954 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.43 3.232 (4) 138
C15—H15⋯Cl1ii 0.93 2.82 3.745 (9) 170
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-NT (Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Increasing interest has been focused on the stereochemical aspects of sulphoxides. The conformational analysis of cyclic sulphoxides is an area of attraction for many groups (Okada & Tanaka, 2002; Hutton et al., 2002; Contreras et al., 1998). Significant attention was earlier directed toward the conformational analysis of substituted thian-1-oxides (Freeman et al., 2001; Nagao et al., 1995). The conformational integrity of the sulphoxide has also generated interest in the various conditions under which it may undergo stereoisomerization. A large number of aliphatic, aromatic and cyclic sulphoxides exhibit antimicrobial activity (Ingold et al., 1999; Ansel et al., 2006; Rouvier et al., 2004). Although extensive studies on sulphoxides have disclosed their chemical and physico-chemical properties, little is known about the properties of the sulphinyl groups in cyclic sulphoxides. To investigate the conformations, substitution effect and antimicrobial activity of unsymmetrical thiopyran-4-one 1-oxides, the title compound was synthesized.

Thiruvalluvar et al., (2007) have reported a crystal structure of 2-(4-Fluorophenyl)-6-phenyltetrahydro-2H-thiopyran-4-one 1-oxide, wherein the thiopyran unit is in chair form. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The thiopyran unit of the title molecule, C17H15ClO2S, is in the chair form. The geometry around S1 atom is tetrahedral and C4 is planar. A crystallographic mirror plane bisects the molecule, passing through the O=S and the opposite C=O atoms of the central ring. The (p-chloro)phenyl at the 2 position and the phenyl ring at the 6 position have equatorial orientations. C2—H2···O1(x, y, 1 + z) and C15—H15···Cl1(1/2 - x, -y, -1/2 + z) intermolecular hydrogen bonds forming an infinite one dimensional chain with base vector [0 0 1] are found in the crystal structure. Further, a short intermolecular O1···C4(x, y, -1 + z) contact of 2.970 (5)Å is also found in the crystal structure.

Related literature top

For a related crystal structure, see: Thiruvalluvar et al. (2007). For applications of sulfoxides, see: Contreras et al. (1998); Hutton et al. (2002); Okada & Tanaka (2002). For the conformational analysis of substituted thian-1-oxides, see: Freeman et al. (2001); Nagao et al. (1995). For the antimicrobial activity of aliphatic, aromatic and cyclic sulfoxides, see: Ansel et al. (2006); Ingold et al. (1999); Rouvier et al. (2004).

Experimental top

A mixture of cis-2-(4-chlorophenyl)-6-phenyldithian-4-one (3.18 g, 0.01 mol), diethyl ether (60 ml), bromine (3.0 g) in water (30 ml) was shaken for few minutes. The solid that separated was filtered, washed with ether and recrystallized from chloroform-carbon tetrachloride mixture (1:1 v/v). The yield obtained was 68%(2.16 g).

Refinement top

The structure was solved in the space group Pnma with half a molecule in the asymmetric unit. The other half is related by a mirror plane symmetry [x, 1/2 - y, z]. The s.o.f. of C14A, Cl1, C14B and H14B is 0.5 and for the remaining phenyl group atoms it is 1.00. This confirms the (p-chloro)phenyl group at 2 position and the phenyl group at 6 position. The H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT-NT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering and 30% probability displacement ellipsoids. The unlabelled and labelled atoms are related by mirror plane [symmetry code: x, 1/2 - y, z].
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2-r-(4-Chlorophenyl)-6-c-phenyl-3,4,5,6-tetrahydro-2H-thiopyran-4-one 1-oxide top
Crystal data top
C17H15ClO2SDx = 1.366 Mg m3
Mr = 318.81Melting point: 417 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9562 reflections
a = 11.5195 (5) Åθ = 3.0–24.8°
b = 25.7589 (12) ŵ = 0.38 mm1
c = 5.2248 (2) ÅT = 296 K
V = 1550.35 (12) Å3Thick, colourless
Z = 40.58 × 0.35 × 0.15 mm
F(000) = 664
Data collection top
Bruker APEXII CCD
diffractometer
1954 independent reflections
Radiation source: fine-focus sealed tube1551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 1.6°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 3434
Tmin = 0.809, Tmax = 0.945l = 66
33450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0825P)2 + 1.5305P]
where P = (Fo2 + 2Fc2)/3
1954 reflections(Δ/σ)max = 0.001
106 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H15ClO2SV = 1550.35 (12) Å3
Mr = 318.81Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.5195 (5) ŵ = 0.38 mm1
b = 25.7589 (12) ÅT = 296 K
c = 5.2248 (2) Å0.58 × 0.35 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1954 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1551 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.945Rint = 0.040
33450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.20Δρmax = 0.32 e Å3
1954 reflectionsΔρmin = 0.42 e Å3
106 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.0955 (4)0.00160 (11)0.0431 (9)0.1475 (18)0.500
S10.24636 (8)0.250000.27287 (17)0.0434 (3)
O10.3171 (3)0.250000.0330 (5)0.0614 (10)
O40.5597 (3)0.250000.7542 (7)0.0772 (13)
C20.3029 (3)0.19728 (12)0.4726 (5)0.0477 (9)
C30.4354 (3)0.20065 (15)0.4859 (7)0.0621 (13)
C40.4819 (3)0.250000.5959 (8)0.0581 (16)
C110.2583 (3)0.14695 (14)0.3651 (7)0.0593 (11)
C120.1618 (4)0.12411 (19)0.4657 (10)0.0873 (18)
C130.1167 (5)0.0784 (2)0.3692 (16)0.113 (3)
C14A0.1685 (7)0.0557 (2)0.1666 (16)0.112 (3)0.500
C14B0.1685 (7)0.0557 (2)0.1666 (16)0.112 (3)0.500
C150.2634 (7)0.0778 (3)0.0566 (14)0.124 (3)
C160.3087 (5)0.1234 (2)0.1524 (10)0.0940 (19)
H20.271920.201470.646030.0573*
H3A0.463770.171880.588080.0745*
H3B0.466290.196510.314390.0745*
H120.125020.139810.603940.1053*
H130.051390.063400.443210.1358*
H14B0.139100.024760.101570.1344*0.500
H150.298070.061990.084110.1492*
H160.373040.138540.074660.1130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.168 (3)0.0895 (18)0.185 (4)0.0163 (19)0.060 (3)0.035 (2)
S10.0328 (5)0.0708 (7)0.0265 (5)0.00000.0033 (3)0.0000
O10.0611 (19)0.101 (2)0.0221 (13)0.00000.0046 (13)0.0000
O40.0365 (16)0.138 (3)0.057 (2)0.00000.0168 (14)0.0000
C20.0413 (14)0.0715 (18)0.0304 (13)0.0054 (13)0.0019 (11)0.0014 (12)
C30.0390 (15)0.096 (3)0.0512 (18)0.0139 (16)0.0103 (13)0.0018 (17)
C40.0304 (19)0.106 (4)0.038 (2)0.00000.0045 (16)0.0000
C110.0562 (18)0.069 (2)0.0527 (18)0.0096 (16)0.0125 (15)0.0000 (15)
C120.063 (2)0.095 (3)0.104 (4)0.007 (2)0.009 (2)0.018 (3)
C130.092 (4)0.097 (4)0.150 (6)0.019 (3)0.005 (4)0.004 (4)
C14A0.118 (5)0.080 (3)0.138 (5)0.001 (3)0.048 (4)0.017 (3)
C14B0.118 (5)0.080 (3)0.138 (5)0.001 (3)0.048 (4)0.017 (3)
C150.156 (6)0.099 (4)0.118 (5)0.008 (4)0.006 (4)0.045 (4)
C160.111 (4)0.094 (3)0.077 (3)0.001 (3)0.013 (3)0.025 (3)
Geometric parameters (Å, º) top
Cl1—C14A1.751 (7)C13—C14B1.349 (11)
Cl1—C14B1.751 (7)C14A—C151.360 (11)
Cl1—H14B0.8400C14B—C151.360 (11)
S1—C21.832 (3)C15—C161.379 (9)
S1—C2i1.832 (3)C2—H20.9800
S1—O11.495 (3)C3—H3A0.9700
O4—C41.220 (5)C3—H3B0.9700
C2—C31.530 (5)C12—H120.9300
C2—C111.503 (5)C13—H130.9300
C3—C41.494 (4)C14A—H14B0.9300
C11—C121.363 (6)C14B—H14B0.9300
C11—C161.393 (6)C15—H150.9300
C12—C131.382 (8)C16—H160.9300
C13—C14A1.349 (11)
Cl1···C15ii3.645 (9)C2···O1xiv3.232 (4)
Cl1···H15iii2.8200C2···O1x3.232 (4)
S1···O4iv3.494 (4)C3···O1xiv3.412 (4)
S1···O4v3.276 (4)C3···O1x3.412 (4)
S1···C4iv3.605 (4)C4···S1xii3.605 (4)
S1···O4vi3.494 (4)C4···O1xiv2.970 (5)
S1···O4vii3.276 (4)C4···S1xv3.605 (4)
S1···C4vi3.605 (4)C4···O1x2.970 (5)
O1···O4viii3.152 (5)C12···C15xiv3.511 (9)
O1···C2viii3.232 (4)C15···C12viii3.511 (9)
O1···C3viii3.412 (4)C15···Cl1iii3.645 (9)
O1···C4viii2.970 (5)C16···O13.322 (5)
O1···C163.322 (5)C3···H162.7700
O1···C2ix3.232 (4)C16···H3B2.7500
O1···C3ix3.412 (4)H2···O1xiv2.4300
O1···O4ix3.152 (5)H2···H122.3300
O1···C16i3.322 (5)H2···O4v2.7900
O1···C4ix2.970 (5)H2···O4vii2.7900
O4···O1x3.152 (5)H2···O1x2.4300
O4···S1xi3.276 (4)H2···H2i2.5000
O4···S1xii3.494 (4)H3A···H12xi2.5900
O4···S1xiii3.276 (4)H3B···O12.6500
O4···O1xiv3.152 (5)H3B···C162.7500
O4···S1xv3.494 (4)H3B···H162.2300
O1···H3Bi2.6500H12···H22.3300
O1···H2viii2.4300H12···H3Avii2.5900
O1···H2ix2.4300H15···Cl1ii2.8200
O1···H3B2.6500H16···C32.7700
O4···H2xiii2.7900H16···H3B2.2300
O4···H2xi2.7900
C14A—Cl1—H14B8.00C11—C16—C15120.2 (5)
C14B—Cl1—H14B8.00S1—C2—H2108.00
C2—S1—C2i95.66 (14)C3—C2—H2108.00
O1—S1—C2106.48 (13)C11—C2—H2108.00
O1—S1—C2i106.48 (13)C2—C3—H3A109.00
C3—C2—C11114.0 (3)C2—C3—H3B109.00
S1—C2—C3109.8 (2)C4—C3—H3A109.00
S1—C2—C11107.8 (2)C4—C3—H3B108.00
C2—C3—C4115.0 (3)H3A—C3—H3B108.00
C3—C4—C3i116.6 (3)C11—C12—H12119.00
O4—C4—C3121.62 (19)C13—C12—H12119.00
O4—C4—C3i121.62 (19)C12—C13—H13120.00
C12—C11—C16117.4 (4)C14A—C13—H13120.00
C2—C11—C16122.1 (4)C14B—C13—H13120.00
C2—C11—C12120.5 (3)Cl1—C14A—H14B8.00
C11—C12—C13122.2 (5)C13—C14A—H14B120.00
C12—C13—C14A119.3 (6)C15—C14A—H14B120.00
C12—C13—C14B119.3 (6)Cl1—C14B—H14B8.00
Cl1—C14A—C15124.3 (6)C13—C14B—H14B120.00
Cl1—C14A—C13115.0 (6)C15—C14B—H14B120.00
C13—C14A—C15120.4 (6)C14A—C15—H15120.00
Cl1—C14B—C15124.3 (6)C14B—C15—H15120.00
C13—C14B—C15120.4 (6)C16—C15—H15120.00
Cl1—C14B—C13115.0 (6)C11—C16—H16120.00
C14A—C15—C16120.5 (7)C15—C16—H16120.00
C14B—C15—C16120.5 (7)
O1—S1—C2—C348.2 (2)C2—C11—C16—C15178.6 (5)
O1—S1—C2—C1176.5 (2)C12—C11—C16—C152.2 (7)
C2i—S1—C2—C360.9 (2)C11—C12—C13—C14A0.9 (9)
C2i—S1—C2—C11174.5 (2)C11—C12—C13—C14B0.9 (9)
S1—C2—C3—C459.9 (3)C12—C13—C14A—Cl1174.1 (5)
C11—C2—C3—C4179.1 (3)C12—C13—C14A—C150.7 (11)
S1—C2—C11—C1296.7 (4)C12—C13—C14B—Cl1174.1 (5)
S1—C2—C11—C1679.6 (4)C12—C13—C14B—C150.7 (11)
C3—C2—C11—C12141.3 (4)Cl1—C14A—C15—C16173.5 (6)
C3—C2—C11—C1642.5 (5)C13—C14A—C15—C160.7 (11)
C2—C3—C4—O4134.6 (4)Cl1—C14B—C15—C16173.5 (6)
C2—C3—C4—C3i50.5 (4)C13—C14B—C15—C160.7 (11)
C2—C11—C12—C13178.7 (5)C14A—C15—C16—C110.8 (10)
C16—C11—C12—C132.3 (7)C14B—C15—C16—C110.8 (10)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+3/2; (vi) x1/2, y, z+1/2; (vii) x1/2, y, z+3/2; (viii) x, y, z1; (ix) x, y+1/2, z1; (x) x, y+1/2, z+1; (xi) x+1/2, y, z+3/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z+3/2; (xiv) x, y, z+1; (xv) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1xiv0.982.433.232 (4)138
C15—H15···Cl1ii0.932.823.745 (9)170
Symmetry codes: (ii) x+1/2, y, z1/2; (xiv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15ClO2S
Mr318.81
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)11.5195 (5), 25.7589 (12), 5.2248 (2)
V3)1550.35 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.58 × 0.35 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.809, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
33450, 1954, 1551
Rint0.040
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.211, 1.20
No. of reflections1954
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-NT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.433.232 (4)138
C15—H15···Cl1ii0.932.823.745 (9)170
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z1/2.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

References

First citationAnsel, H. C., Norred, W. P. & Roth, I. L. (2006). J. Pharm. Sci. 58, 836–839.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationContreras, J. G., Madariaga, S. T. & Alderete, J. B. (1998). J. Phys. Org. Chem. 11, 392–396.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreeman, F., Nguyen, T. & Hehre, W. (2001). J. Mol. Struct. (THEOCHEM), 549, 203–216.  Web of Science CrossRef CAS Google Scholar
First citationHutton, C. A., Jaber, R., Otaegui, M., Turnet, J. J., Turner, P., White, J. M. & Bacskay, G. B. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1066–1071.  CrossRef Google Scholar
First citationIngold, K., Bigler, P., Thormann, W., Cavaliero, T., Gottstein, B. & Hemphill, A. (1999). Antimicrob. Agents Chemother. 43, 1052–1061.  Web of Science PubMed CAS Google Scholar
First citationNagao, Y., Goto, M., Kida, K. & Shiro, M. (1995). Heterocycles, 41, 419–424.  CrossRef CAS Google Scholar
First citationOkada, K. & Tanaka, M. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2704–2711.  Web of Science CrossRef Google Scholar
First citationRouvier, C. S., Barret, J. M., Farrell, C. M., Sharples, D., Hill, B. T. & Barbe, J. (2004). Eur. J. Med. Chem. 39, 1029–1038.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Butcher, R. J., Pandiarajan, K. & Devanathan, D. (2007). Acta Cryst. E63, o4486.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds