metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(N,N-di­ethyl­di­thio­carbamato-κ2S,S′)tetra-μ3-sulfido-dicopper(I)dimolybdenum(V) iso­propanol disolvate

aCollege of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: jxstnu2008@yahoo.cn

(Received 22 September 2008; accepted 28 October 2008; online 13 November 2008)

The mol­ecule of the title compound, [Cu2Mo2Br2(C7H14NS2)2S4]·2C3H7OH, comprises one [(i-C3H7)2NCS2]2Mo2S4 unit and two CuBr units held together by six Cu—μ3-S bonds, thus forming a cubane-like Mo2S4Cu2 core. Intramolecular O—H⋯S hydrogen bonds may stabilize the structure. Two methyl groups of the two independent solvent molecules are disordered over two positions and were refined with occupancies of 0.733 (12) and 0.267 (12).

Related literature

For sulfido-bridged dinuclear complexes with an M2S4 core (M = Mo, W), see: Hidai et al. (1999[Hidai, M., Ikada, T., Kuwata, S. & Mizobe, Y. (1999). Inorg. Chem. 38, 64-69.]); Lang et al. (2003[Lang, J.-P., Wei, Z.-H., Xu, Q.-F., Li, H.-X. & Chen, J.-X. (2003). J. Organomet. Chem. 87, 197-202.]); Curtis et al. (1997[Curtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231-235.]); Stiefel et al. (1985[Stiefel, E. I., Halbert, T. R. & Cohen, S. A. (1985). Organometallics, 4, 1689-1690.]); Wu et al. (1990[Wu, X.-T., Zhu, N.-Y. & Zheng, Y.-F. (1990). J. Chem. Soc. Chem. Commun. pp. 780-781.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8O

  • Mr = 1079.91

  • Triclinic, [P \overline 1]

  • a = 12.515 (3) Å

  • b = 12.734 (3) Å

  • c = 12.759 (3) Å

  • α = 107.76 (3)°

  • β = 108.26 (3)°

  • γ = 90.12 (3)°

  • V = 1828.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.48 mm−1

  • T = 291 (2) K

  • 0.30 × 0.29 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.284, Tmax = 0.408

  • 17918 measured reflections

  • 6703 independent reflections

  • 5814 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.121

  • S = 1.12

  • 6703 reflections

  • 353 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 1.90 e Å−3

  • Δρmin = −2.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯S5 0.82 2.47 3.199 (8) 149
O2—H2D⋯S6 0.82 2.59 3.258 (8) 139

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, chemistry of the sulfido-bridged dinuclear complexes with an M2S4 core (M = Mo, W) and various transition metals has been intensively investigated. For example, precursors [(dtc)2Mo2S2(µ-S)2] (dtc = S2CNEt2) (Hidai et al., 1999; Lang et al., 2003) and [Cpx2Mo2S2(µ-S)2] (Cpx = pentamethyl-, pentaethyl- or pentabutyl-cyclopentadienyl) (Curtis et al., 1997; Stiefel et al., 1985) and [Et4N]2[(edt)2Mo2S2(µ-S)2] (edt = ethanedithiolate) (Wu et al., 1990) were shown to react with transition metals to form both incomplete [Mo2MS4] and complete [Mo2M2S4] cubane-like clusters. We report herein the formation of a complete cubane-like [Mo2Cu2S4] by using [(i-C3H7)2NCS2]2Mo2S4 as the starting material to react with two equivalents of CuBr.

The title molecule contains one [(i-C3H7)2NCS2]2Mo2S4 moiety and two CuBr units, which are assembled into a distorted Mo2Cu2S4 cubane-like core (Fig. 1). The formal oxidation states for each Mo and Cu remain + 5 and + 1, respectively. Each Mo center is coordinated by three µ3-S atoms, and the two S atoms of an [(i-C3H7)2NCS2] group, forming a distorted square pyramidal geometry, while each Cu atom is tetrahedrally coordinated by three µ3-S atoms and a terminal bromide. The Mo-S bonds are in the range of 2.1621 (19)-2.4465 (18) Å, due to the different S atoms coordinated. The Cu-S(terminal) bonds [average value: 2.436 (2) Å] are longer than the other Cu-S bonds [average value: 2.211 (2) Å]. The Mo···Mo [2.7874 (10) Å] and Mo···Cu [average value: 2.8114 (15) Å] distances and the Cu-Br bonds [average value: 2.2812 (15) Å] have normal values. Intramolecular O-H···S hydrogen bonds (Table 1) may be effective in the stabilization of the structure.

Related literature top

For sulfido-bridged dinuclear complexes with an M2S4 core (M = Mo, W), see: Hidai et al. (1999); Lang et al. (2003); Curtis et al. (1997); Stiefel et al. (1985); Wu et al. (1990).

Experimental top

For the preparation of the title compound, [(i-C3H7)2NCS2]2Mo2S4 (0.49 g, 0.5 mmol), and CuBr (0.144 g, 1.0 mmol) were added into CH2Cl2 solution (20 ml). The mixture was stirred at room temperature for 0.5 h, and the dark-red suspension gradually turned into dark red solution, and then filtered. The filtrate was layered with isopropyl alcohol (30 ml) to produce dark red crystals in 4 d.

Refinement top

The C15, C16 and C19 methyl groups in di-isopropyl alcohol solvate were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.733 (12) for C15, H15A, H15B, H15C, C16, H16A, H16B, H16C, C19, H19A, H19B, H19C and 0.267 (12) for C15A, H15D, H15E, H15F, C16A, H16D, H16E, H16F, C19A, H19D, H19E, H19F, respectively. The C15 and C15A atoms were refined isotropically. H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.98 and 0.96 Å for methine and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for methine H and x = 1.5 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(I) top
Crystal data top
[Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8OZ = 2
Mr = 1079.91F(000) = 1068
Triclinic, P1Dx = 1.962 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.515 (3) ÅCell parameters from 6125 reflections
b = 12.734 (3) Åθ = 3.3–25.4°
c = 12.759 (3) ŵ = 4.48 mm1
α = 107.76 (3)°T = 291 K
β = 108.26 (3)°Block, dark red
γ = 90.12 (3)°0.30 × 0.29 × 0.20 mm
V = 1828.2 (9) Å3
Data collection top
Rigaku Mercury
diffractometer
6703 independent reflections
Radiation source: fine-focus sealed tube5814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1515
Tmin = 0.284, Tmax = 0.408k = 1515
17918 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0376P)2 + 11.7921P]
where P = (Fo2 + 2Fc2)/3
6703 reflections(Δ/σ)max = 0.006
353 parametersΔρmax = 1.90 e Å3
10 restraintsΔρmin = 2.13 e Å3
Crystal data top
[Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8Oγ = 90.12 (3)°
Mr = 1079.91V = 1828.2 (9) Å3
Triclinic, P1Z = 2
a = 12.515 (3) ÅMo Kα radiation
b = 12.734 (3) ŵ = 4.48 mm1
c = 12.759 (3) ÅT = 291 K
α = 107.76 (3)°0.30 × 0.29 × 0.20 mm
β = 108.26 (3)°
Data collection top
Rigaku Mercury
diffractometer
6703 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
5814 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.408Rint = 0.032
17918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05510 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0376P)2 + 11.7921P]
where P = (Fo2 + 2Fc2)/3
6703 reflectionsΔρmax = 1.90 e Å3
353 parametersΔρmin = 2.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo11.00881 (5)0.18736 (4)0.39883 (5)0.02348 (15)
Mo21.16712 (5)0.20599 (5)0.29120 (5)0.02768 (16)
Cu11.12203 (10)0.00501 (8)0.33253 (10)0.0544 (3)
Cu21.23373 (9)0.24097 (8)0.53604 (10)0.0517 (3)
Br11.13513 (7)0.18080 (6)0.29790 (7)0.0441 (2)
Br21.37543 (7)0.30267 (8)0.71075 (7)0.0535 (3)
S11.09552 (15)0.10190 (15)0.51854 (15)0.0308 (4)
S21.29693 (17)0.12006 (18)0.3783 (2)0.0473 (5)
S31.13192 (15)0.34620 (14)0.44228 (15)0.0301 (4)
S41.00310 (14)0.07858 (14)0.21230 (14)0.0281 (4)
S51.17527 (16)0.15164 (14)0.09288 (15)0.0323 (4)
S61.28036 (15)0.35219 (14)0.27486 (15)0.0311 (4)
S70.81395 (14)0.10577 (14)0.33380 (16)0.0327 (4)
S80.90078 (15)0.32398 (14)0.48497 (16)0.0325 (4)
O10.6199 (7)0.1776 (6)0.1619 (6)0.087 (2)
H1D0.62710.15950.22650.131*
O21.0055 (6)0.3083 (5)0.1913 (6)0.0697 (19)
H2D1.06460.29300.17810.104*
N10.6852 (5)0.2439 (4)0.4372 (5)0.0284 (12)
N21.3096 (5)0.3023 (5)0.0653 (5)0.0293 (13)
C10.5412 (6)0.1342 (7)0.2459 (6)0.0413 (18)
H1A0.53350.20230.22790.062*
H1B0.46910.09010.21270.062*
H1C0.59470.09400.21400.062*
C20.5971 (7)0.0577 (6)0.4167 (8)0.046 (2)
H2A0.62260.08060.50030.069*
H2B0.65200.01600.38860.069*
H2C0.52600.01220.38620.069*
C30.5824 (6)0.1597 (6)0.3769 (7)0.0349 (16)
H3A0.52200.19560.40330.042*
C40.6128 (7)0.4224 (6)0.4354 (7)0.0429 (19)
H4A0.65570.42620.38590.064*
H4B0.60870.49590.48310.064*
H4C0.53770.38760.38830.064*
C50.6097 (8)0.3443 (7)0.5956 (8)0.050 (2)
H5A0.65030.30140.64230.075*
H5B0.53450.30810.55160.075*
H5C0.60560.41690.64540.075*
C60.6703 (6)0.3545 (6)0.5132 (6)0.0298 (15)
H6A0.74600.39280.56090.036*
C70.7831 (6)0.2252 (5)0.4229 (6)0.0287 (15)
C81.1642 (8)0.2257 (9)0.1322 (7)0.063 (3)
H8A1.13600.29690.11930.094*
H8B1.12220.17800.11000.094*
H8C1.15590.19350.21320.094*
C91.3407 (9)0.1315 (7)0.0753 (8)0.061 (3)
H9A1.41920.14560.02810.091*
H9B1.33420.09820.15570.091*
H9C1.30220.08200.05180.091*
C101.2881 (7)0.2392 (6)0.0598 (6)0.0401 (19)
H10A1.32740.28470.08890.048*
C111.3276 (8)0.4937 (7)0.0623 (9)0.056 (2)
H11A1.25720.50320.07750.084*
H11B1.31320.46910.02030.084*
H11C1.37500.56300.09750.084*
C121.4996 (7)0.3893 (7)0.0935 (7)0.046 (2)
H12A1.53410.33520.12810.069*
H12B1.54840.45780.12870.069*
H12C1.48790.36290.01130.069*
C131.3864 (6)0.4082 (6)0.1130 (6)0.0337 (16)
H13A1.40110.43610.19740.040*
C141.2634 (6)0.2720 (5)0.1317 (6)0.0281 (15)
C150.7206 (16)0.1461 (12)0.0386 (12)0.041 (3)*0.733 (12)
H15A0.77060.09730.06880.061*0.733 (12)
H15B0.64360.11700.01930.061*0.733 (12)
H15C0.73530.21820.09640.061*0.733 (12)
C15A0.722 (4)0.186 (5)0.057 (3)0.041 (3)*0.267 (12)
H15D0.79310.21520.11720.061*0.267 (12)
H15E0.69140.12190.06610.061*0.267 (12)
H15F0.67000.24180.06130.061*0.267 (12)
C160.8461 (8)0.2073 (9)0.0314 (8)0.039 (3)0.733 (12)
H16A0.85280.27910.02510.058*0.733 (12)
H16B0.85900.21580.09890.058*0.733 (12)
H16C0.90120.16390.00170.058*0.733 (12)
C16A0.750 (3)0.181 (5)0.0666 (18)0.039 (3)0.267 (12)
H16D0.81660.15270.10550.058*0.267 (12)
H16E0.68460.14780.07240.058*0.267 (12)
H16F0.75670.26030.10250.058*0.267 (12)
C170.7390 (11)0.1546 (12)0.0634 (10)0.092 (4)
H170.74840.07780.10290.111*
C180.8873 (8)0.4760 (11)0.2435 (8)0.080 (4)
H18A0.88990.55480.25930.120*
H18B0.88310.45850.31030.120*
H18C0.82180.44010.17750.120*
C191.0116 (11)0.4568 (14)0.1142 (12)0.059 (4)0.733 (12)
H19A1.07920.42820.10190.088*0.733 (12)
H19B1.01740.53540.12800.088*0.733 (12)
H19C0.94740.42140.04640.088*0.733 (12)
C19A0.991 (3)0.388 (4)0.100 (4)0.059 (4)0.267 (12)
H19D0.95420.43600.05690.088*0.267 (12)
H19E0.94750.31670.06710.088*0.267 (12)
H19F1.06540.38080.09500.088*0.267 (12)
C200.9974 (10)0.4343 (10)0.2164 (10)0.083 (3)
H201.06280.47320.28460.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0218 (3)0.0244 (3)0.0245 (3)0.0001 (2)0.0092 (2)0.0066 (2)
Mo20.0320 (3)0.0283 (3)0.0232 (3)0.0066 (2)0.0126 (2)0.0052 (2)
Cu10.0570 (7)0.0372 (6)0.0485 (6)0.0155 (5)0.0029 (5)0.0061 (5)
Cu20.0422 (6)0.0401 (6)0.0523 (6)0.0043 (4)0.0116 (5)0.0145 (5)
Br10.0499 (5)0.0361 (4)0.0474 (5)0.0070 (4)0.0162 (4)0.0146 (4)
Br20.0384 (5)0.0843 (7)0.0297 (4)0.0176 (4)0.0042 (3)0.0146 (4)
S10.0307 (9)0.0365 (9)0.0284 (9)0.0022 (7)0.0110 (7)0.0139 (8)
S20.0355 (11)0.0513 (12)0.0539 (13)0.0013 (9)0.0220 (10)0.0076 (10)
S30.0314 (9)0.0260 (9)0.0325 (9)0.0032 (7)0.0133 (8)0.0061 (7)
S40.0302 (9)0.0285 (9)0.0240 (8)0.0036 (7)0.0095 (7)0.0057 (7)
S50.0387 (10)0.0319 (9)0.0249 (9)0.0102 (7)0.0161 (8)0.0017 (7)
S60.0368 (10)0.0311 (9)0.0244 (8)0.0107 (7)0.0157 (7)0.0019 (7)
S70.0233 (9)0.0280 (9)0.0390 (10)0.0016 (7)0.0123 (8)0.0022 (8)
S80.0265 (9)0.0267 (9)0.0405 (10)0.0028 (7)0.0152 (8)0.0015 (8)
O10.117 (7)0.081 (5)0.064 (5)0.019 (5)0.042 (5)0.010 (4)
O20.081 (5)0.060 (4)0.067 (4)0.012 (4)0.020 (4)0.024 (4)
N10.026 (3)0.026 (3)0.029 (3)0.002 (2)0.008 (2)0.003 (2)
N20.033 (3)0.033 (3)0.023 (3)0.002 (2)0.016 (2)0.004 (2)
C10.033 (4)0.042 (4)0.039 (4)0.000 (3)0.004 (3)0.007 (4)
C20.039 (5)0.041 (4)0.057 (5)0.007 (4)0.011 (4)0.021 (4)
C30.022 (4)0.035 (4)0.043 (4)0.000 (3)0.012 (3)0.004 (3)
C40.046 (5)0.037 (4)0.044 (5)0.011 (4)0.014 (4)0.012 (4)
C50.060 (6)0.044 (5)0.057 (5)0.005 (4)0.037 (5)0.011 (4)
C60.027 (4)0.032 (4)0.028 (4)0.004 (3)0.012 (3)0.001 (3)
C70.033 (4)0.026 (3)0.028 (4)0.003 (3)0.014 (3)0.006 (3)
C80.057 (6)0.090 (7)0.031 (5)0.026 (5)0.002 (4)0.022 (5)
C90.077 (7)0.053 (5)0.049 (5)0.005 (5)0.041 (5)0.010 (4)
C100.053 (5)0.045 (4)0.020 (4)0.012 (4)0.016 (3)0.002 (3)
C110.064 (6)0.043 (5)0.074 (6)0.002 (4)0.032 (5)0.026 (5)
C120.045 (5)0.044 (5)0.051 (5)0.007 (4)0.022 (4)0.014 (4)
C130.040 (4)0.032 (4)0.031 (4)0.012 (3)0.016 (3)0.008 (3)
C140.029 (4)0.028 (4)0.027 (4)0.002 (3)0.010 (3)0.007 (3)
C160.020 (5)0.068 (7)0.018 (4)0.017 (5)0.002 (4)0.005 (4)
C16A0.020 (5)0.068 (7)0.018 (4)0.017 (5)0.002 (4)0.005 (4)
C170.089 (9)0.125 (11)0.087 (9)0.027 (8)0.045 (7)0.051 (8)
C180.056 (6)0.154 (11)0.031 (5)0.012 (7)0.010 (4)0.034 (6)
C190.047 (7)0.092 (12)0.072 (8)0.031 (8)0.028 (6)0.065 (10)
C19A0.047 (7)0.092 (12)0.072 (8)0.031 (8)0.028 (6)0.065 (10)
C200.093 (9)0.084 (8)0.054 (6)0.015 (7)0.010 (6)0.011 (6)
Geometric parameters (Å, º) top
Mo1—Mo22.7874 (10)C8—H8B0.9600
Mo1—Cu12.7715 (14)C8—H8C0.9600
Mo1—Cu22.7618 (16)C9—C101.508 (12)
Mo1—S12.1621 (19)C9—H9A0.9600
Mo1—S32.3535 (19)C9—H9B0.9600
Mo1—S42.3386 (19)C9—H9C0.9600
Mo1—S72.4310 (19)C10—N21.486 (8)
Mo1—S82.4160 (19)C10—H10A0.9800
Mo2—Cu12.8547 (14)C11—C131.510 (11)
Mo2—Cu22.8582 (15)C11—H11A0.9600
Mo2—S22.166 (2)C11—H11B0.9600
Mo2—S32.352 (2)C11—H11C0.9600
Mo2—S42.356 (2)C12—C131.522 (10)
Mo2—S52.4465 (18)C12—H12A0.9600
Mo2—S62.4349 (18)C12—H12B0.9600
Cu1—Br12.2867 (14)C12—H12C0.9600
Cu1—S12.444 (2)C13—N21.497 (8)
Cu1—S22.437 (2)C13—H13A0.9800
Cu1—S42.213 (2)C14—N21.306 (8)
Cu2—Br22.2756 (16)C15—H15A0.9600
Cu2—S12.383 (2)C15—H15B0.9600
Cu2—S22.481 (3)C15—H15C0.9600
Cu2—S32.209 (2)C15A—H15D0.9600
S5—C141.731 (7)C15A—H15E0.9600
S6—C141.744 (7)C15A—H15F0.9600
S7—C71.726 (7)C16—H16A0.9600
S8—C71.741 (7)C16—H16B0.9600
O1—H1D0.8200C16—H16C0.9600
O2—H2D0.8200C16A—H16D0.9600
C1—C31.515 (10)C16A—H16E0.9600
C1—H1A0.9600C16A—H16F0.9600
C1—H1B0.9600C17—C161.378 (15)
C1—H1C0.9600C17—C151.425 (17)
C2—C31.525 (10)C17—C15A1.544 (19)
C2—H2A0.9600C17—C16A1.547 (18)
C2—H2B0.9600C17—O11.715 (15)
C2—H2C0.9600C17—H170.9800
C3—N11.505 (8)C18—H18A0.9600
C3—H3A0.9800C18—H18B0.9600
C4—C61.526 (10)C18—H18C0.9600
C4—H4A0.9600C19—H19A0.9600
C4—H4B0.9600C19—H19B0.9600
C4—H4C0.9600C19—H19C0.9600
C5—C61.510 (10)C19A—H19D0.9600
C5—H5A0.9600C19A—H19E0.9600
C5—H5B0.9600C19A—H19F0.9600
C5—H5C0.9600C20—C19A1.40 (4)
C6—N11.497 (8)C20—C191.479 (17)
C6—H6A0.9800C20—O21.546 (13)
C7—N11.306 (8)C20—C181.579 (12)
C8—C101.513 (12)C20—H200.9800
C8—H8A0.9600
S1—Mo1—S4107.30 (7)C10—C8—H8B109.5
S1—Mo1—S3105.60 (7)H8A—C8—H8B109.5
S4—Mo1—S3104.32 (7)C10—C8—H8C109.5
S1—Mo1—S8110.87 (7)H8A—C8—H8C109.5
S4—Mo1—S8137.84 (7)H8B—C8—H8C109.5
S3—Mo1—S882.15 (6)C6—C5—H5A109.5
S1—Mo1—S7102.40 (7)C6—C5—H5B109.5
S4—Mo1—S783.56 (7)H5A—C5—H5B109.5
S3—Mo1—S7146.89 (7)C6—C5—H5C109.5
S8—Mo1—S771.52 (6)H5A—C5—H5C109.5
S1—Mo1—Cu256.33 (6)H5B—C5—H5C109.5
S4—Mo1—Cu2107.39 (6)C3—C2—H2A109.5
S3—Mo1—Cu250.40 (6)C3—C2—H2B109.5
S8—Mo1—Cu2108.24 (6)H2A—C2—H2B109.5
S7—Mo1—Cu2157.85 (6)C3—C2—H2C109.5
S1—Mo1—Cu157.82 (6)H2A—C2—H2C109.5
S4—Mo1—Cu150.46 (5)H2B—C2—H2C109.5
S3—Mo1—Cu1106.97 (6)C3—C1—H1A109.5
S8—Mo1—Cu1166.67 (6)C3—C1—H1B109.5
S7—Mo1—Cu1102.73 (6)H1A—C1—H1B109.5
Cu2—Mo1—Cu172.36 (5)C3—C1—H1C109.5
S1—Mo1—Mo2101.97 (5)H1A—C1—H1C109.5
S4—Mo1—Mo253.87 (5)H1B—C1—H1C109.5
S3—Mo1—Mo253.66 (5)C6—C4—H4A109.5
S8—Mo1—Mo2130.76 (5)C6—C4—H4B109.5
S7—Mo1—Mo2135.61 (5)H4A—C4—H4B109.5
Cu2—Mo1—Mo262.00 (4)C6—C4—H4C109.5
Cu1—Mo1—Mo261.80 (4)H4A—C4—H4C109.5
S2—Mo2—S3105.05 (8)H4B—C4—H4C109.5
S2—Mo2—S4104.02 (8)N2—C13—C11109.8 (6)
S3—Mo2—S4103.81 (7)N2—C13—C12111.4 (6)
S2—Mo2—S6101.58 (8)C11—C13—C12112.6 (6)
S3—Mo2—S685.72 (6)N2—C13—H13A107.6
S4—Mo2—S6149.13 (7)C11—C13—H13A107.6
S2—Mo2—S5103.59 (8)C12—C13—H13A107.6
S3—Mo2—S5146.24 (7)N1—C7—S7126.4 (5)
S4—Mo2—S586.05 (7)N1—C7—S8123.9 (5)
S6—Mo2—S571.31 (7)S7—C7—S8109.6 (4)
S2—Mo2—Mo198.63 (6)N2—C10—C9111.9 (6)
S3—Mo2—Mo153.70 (5)N2—C10—C8112.6 (7)
S4—Mo2—Mo153.29 (5)C9—C10—C8113.5 (7)
S6—Mo2—Mo1138.23 (5)N2—C10—H10A106.1
S5—Mo2—Mo1137.45 (5)C9—C10—H10A106.1
S2—Mo2—Cu156.09 (6)C8—C10—H10A106.1
S3—Mo2—Cu1104.42 (5)N1—C6—C5112.3 (6)
S4—Mo2—Cu149.13 (5)N1—C6—C4108.4 (6)
S6—Mo2—Cu1156.98 (6)C5—C6—C4113.6 (6)
S5—Mo2—Cu1106.21 (6)N1—C6—H6A107.4
Mo1—Mo2—Cu158.83 (4)C5—C6—H6A107.4
S2—Mo2—Cu257.22 (7)C4—C6—H6A107.4
S3—Mo2—Cu249.00 (5)N1—C3—C1112.6 (6)
S4—Mo2—Cu2103.90 (6)N1—C3—C2112.3 (6)
S6—Mo2—Cu2104.35 (6)C1—C3—C2114.5 (6)
S5—Mo2—Cu2159.79 (6)N1—C3—H3A105.5
Mo1—Mo2—Cu258.56 (4)C1—C3—H3A105.5
Cu1—Mo2—Cu269.75 (5)C2—C3—H3A105.5
S4—Cu1—Br1124.95 (7)N2—C14—S5126.6 (5)
S4—Cu1—S2100.02 (9)N2—C14—S6123.5 (5)
Br1—Cu1—S2116.22 (8)S5—C14—S6109.9 (4)
S4—Cu1—S1102.17 (8)C16—C17—C15108.4 (12)
Br1—Cu1—S1114.44 (7)C16—C17—C15A100 (2)
S2—Cu1—S193.70 (8)C16—C17—C16A90.1 (16)
S4—Cu1—Mo154.58 (5)C16—C17—O1125.5 (10)
Br1—Cu1—Mo1148.85 (6)C15—C17—O1113.2 (11)
S2—Cu1—Mo192.75 (7)C15A—C17—O1108.3 (18)
S1—Cu1—Mo148.48 (5)C16A—C17—O1121 (2)
S4—Cu1—Mo253.62 (6)C16—C17—H17102.0
Br1—Cu1—Mo2150.08 (6)C15—C17—H17102.0
S2—Cu1—Mo247.51 (6)C15A—C17—H17120.4
S1—Cu1—Mo293.37 (6)C16A—C17—H17115.2
Mo1—Cu1—Mo259.37 (3)O1—C17—H17102.0
S3—Cu2—Br2125.87 (7)C19A—C20—O272.2 (18)
S3—Cu2—S1103.11 (8)C19—C20—O2104.5 (10)
Br2—Cu2—S1115.75 (7)C19A—C20—C18118.1 (18)
S3—Cu2—S299.62 (9)C19—C20—C18113.8 (9)
Br2—Cu2—S2112.85 (8)O2—C20—C18115.1 (10)
S1—Cu2—S294.10 (8)C19A—C20—H20129.3
S3—Cu2—Mo155.17 (5)C19—C20—H20107.7
Br2—Cu2—Mo1153.00 (6)O2—C20—H20107.7
S1—Cu2—Mo149.02 (5)C18—C20—H20107.7
S2—Cu2—Mo192.04 (7)C20—C18—H18A109.5
S3—Cu2—Mo253.47 (6)C20—C18—H18B109.5
Br2—Cu2—Mo2146.41 (6)H18A—C18—H18B109.5
S1—Cu2—Mo294.60 (6)C20—C18—H18C109.5
S2—Cu2—Mo247.21 (6)H18A—C18—H18C109.5
Mo1—Cu2—Mo259.44 (4)H18B—C18—H18C109.5
Cu1—S4—Mo174.96 (6)C7—N1—C6120.0 (5)
Cu1—S4—Mo277.26 (7)C7—N1—C3123.1 (6)
Mo1—S4—Mo272.84 (6)C6—N1—C3116.9 (5)
C14—S6—Mo289.4 (2)C14—N2—C10124.0 (6)
C7—S7—Mo189.2 (2)C14—N2—C13120.0 (5)
C7—S8—Mo189.3 (2)C10—N2—C13116.0 (5)
Mo2—S2—Cu176.40 (7)C17—O1—H1D109.5
Mo2—S2—Cu275.57 (7)C20—O2—H2D109.5
Cu1—S2—Cu283.22 (8)C17—C15—H15A109.5
Mo1—S1—Cu274.65 (6)C17—C15—H15B109.5
Mo1—S1—Cu173.70 (6)C17—C15—H15C109.5
Cu2—S1—Cu185.16 (7)C20—C19—H19A109.5
C14—S5—Mo289.3 (2)C20—C19—H19B109.5
Cu2—S3—Mo277.53 (7)H19A—C19—H19B109.5
Cu2—S3—Mo174.43 (6)C20—C19—H19C109.5
Mo2—S3—Mo172.65 (6)H19A—C19—H19C109.5
C10—C9—H9A109.5H19B—C19—H19C109.5
C10—C9—H9B109.5C17—C16—H16A109.5
H9A—C9—H9B109.5C17—C16—H16B109.5
C10—C9—H9C109.5C17—C16—H16C109.5
H9A—C9—H9C109.5C20—C19A—H19D109.5
H9B—C9—H9C109.5C20—C19A—H19E109.5
C13—C12—H12A109.5H19D—C19A—H19E109.5
C13—C12—H12B109.5C20—C19A—H19F109.5
H12A—C12—H12B109.5H19D—C19A—H19F109.5
C13—C12—H12C109.5H19E—C19A—H19F109.5
H12A—C12—H12C109.5C17—C15A—H15D109.5
H12B—C12—H12C109.5C17—C15A—H15E109.5
C13—C11—H11A109.5H15D—C15A—H15E109.5
C13—C11—H11B109.5C17—C15A—H15F109.5
H11A—C11—H11B109.5H15D—C15A—H15F109.5
C13—C11—H11C109.5H15E—C15A—H15F109.5
H11A—C11—H11C109.5C17—C16A—H16D109.5
H11B—C11—H11C109.5C17—C16A—H16E109.5
C10—C8—H8A109.5C17—C16A—H16F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···S50.822.473.199 (8)149
O2—H2D···S60.822.593.258 (8)139

Experimental details

Crystal data
Chemical formula[Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8O
Mr1079.91
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)12.515 (3), 12.734 (3), 12.759 (3)
α, β, γ (°)107.76 (3), 108.26 (3), 90.12 (3)
V3)1828.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)4.48
Crystal size (mm)0.30 × 0.29 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.284, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
17918, 6703, 5814
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.121, 1.12
No. of reflections6703
No. of parameters353
No. of restraints10
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0376P)2 + 11.7921P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.90, 2.13

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···S50.822.473.199 (8)148.7
O2—H2D···S60.822.593.258 (8)139.3
 

Acknowledgements

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

References

First citationCurtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationHidai, M., Ikada, T., Kuwata, S. & Mizobe, Y. (1999). Inorg. Chem. 38, 64–69.  Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLang, J.-P., Wei, Z.-H., Xu, Q.-F., Li, H.-X. & Chen, J.-X. (2003). J. Organomet. Chem. 87, 197–202.  Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStiefel, E. I., Halbert, T. R. & Cohen, S. A. (1985). Organometallics, 4, 1689–1690.  Google Scholar
First citationWu, X.-T., Zhu, N.-Y. & Zheng, Y.-F. (1990). J. Chem. Soc. Chem. Commun. pp. 780–781.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds