organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-nitro­benzo­nitrile

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 14 November 2008; accepted 23 November 2008; online 29 November 2008)

The asymmetric unit of the title compound, C8H6N2O2, contains two independent mol­ecules, the aromatic rings of which are oriented at a dihedral angle of 1.68 (3)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two non-planar six-membered rings, which adopt envelope and twisted conformations. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. There are ππ contacts between the benzene rings [centroid–centroid distances = 3.752 (3) and 3.874 (3) Å].

Related literature

For general background, see: Suzuki et al. (1994[Suzuki, H., Tomaru, J. & Murashima, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2413-2416.]). For a related structure, see: Xinhua et al. (2003[Xinhua, P., Naoyuki, F. & Masayuki, M. (2003). Org. Biomol. Chem. 1, 2326-2335.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O2

  • Mr = 162.15

  • Monoclinic, P 21 /n

  • a = 14.025 (3) Å

  • b = 7.3860 (15) Å

  • c = 15.515 (3) Å

  • β = 101.80 (3)°

  • V = 1573.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2974 measured reflections

  • 2852 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.069

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.170

  • S = 1.01

  • 2852 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2 0.96 2.08 2.768 (6) 128
C1—H1C⋯O2i 0.96 2.38 3.229 (6) 147
C4—H4A⋯O1ii 0.93 2.47 3.390 (6) 171
C9—H9B⋯O4 0.96 2.35 2.831 (5) 110
C9—H9C⋯O3iii 0.96 2.50 3.400 (4) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzonitrile is an important pharmaceutical intermediate, many of its derivatives have biological activity and be used as a variety of drugs. Benzonitrile was found to be almost inert toward the combined action of nitrogen dioxide and dioxygen at room temperature (Suzuki et al., 1994). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two crystallographically independent molecules, in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 1.68 (3)°. The intramolecular C-H···O hydrogen bonds result in the formation of two nonplanar six-membered rings C (O2/N2/C1-C3/H1A) and D (O4/N4/C9-C11/H9B). Ring C adopts envelope conformation with O2 atom displaced by 0.690 (3) Å from the plane of the other ring atoms, while ring D has twisted conformation.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. The π-π contacts between the benzene rings Cg1···Cg1i and Cg1···Cg2ii [symmetry codes: (i) -x, 2 - y, -z, (ii) 1/2 - x, 1/2 + y, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C2-C7) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.752 (3) %A and 3.874 (3) %A, respectively.

Related literature top

For general background, see: Suzuki et al. (1994). For a related structure, see: Xinhua et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound is synthesized according to the literature method (Xinhua et al., 2003). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
2-Methyl-3-nitrobenzonitrile top
Crystal data top
C8H6N2O2F(000) = 672
Mr = 162.15Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.025 (3) Åθ = 9–12°
b = 7.3860 (15) ŵ = 0.10 mm1
c = 15.515 (3) ÅT = 294 K
β = 101.80 (3)°Block, colorless
V = 1573.2 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1481 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.970, Tmax = 0.990l = 1818
2974 measured reflections3 standard reflections every 120 min
2852 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 1.75P]
where P = (Fo2 + 2Fc2)/3
2852 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H6N2O2V = 1573.2 (6) Å3
Mr = 162.15Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.025 (3) ŵ = 0.10 mm1
b = 7.3860 (15) ÅT = 294 K
c = 15.515 (3) Å0.30 × 0.20 × 0.10 mm
β = 101.80 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1481 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.069
Tmin = 0.970, Tmax = 0.9903 standard reflections every 120 min
2974 measured reflections intensity decay: 1%
2852 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
2852 reflectionsΔρmin = 0.27 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8903 (3)0.3923 (5)0.9651 (2)0.1022 (11)
O20.8075 (3)0.2944 (5)0.8476 (2)0.1053 (12)
O30.2355 (3)0.1305 (6)0.2733 (2)0.1165 (13)
O40.2358 (2)0.0205 (5)0.3874 (2)0.0933 (10)
N10.9792 (3)0.4285 (6)0.7823 (3)0.0911 (13)
N20.8813 (3)0.2924 (5)0.9055 (2)0.0679 (9)
N30.1646 (3)0.3683 (6)0.4808 (3)0.0913 (12)
N40.1954 (3)0.0405 (6)0.3328 (3)0.0848 (12)
C10.8268 (3)0.0774 (7)0.8368 (3)0.0923 (16)
H1A0.78350.01710.84700.139*
H1B0.81810.18160.87130.139*
H1C0.81280.10920.77550.139*
C20.9291 (3)0.0132 (5)0.8624 (2)0.0510 (9)
C30.9574 (2)0.1578 (5)0.8973 (2)0.0485 (9)
C41.0540 (3)0.2126 (6)0.9250 (2)0.0674 (11)
H4A1.07020.32630.94940.081*
C51.1250 (3)0.0870 (7)0.9140 (3)0.0735 (12)
H5A1.19030.11950.93090.088*
C61.1036 (3)0.0738 (6)0.8811 (3)0.0687 (11)
H6A1.15340.15380.87600.082*
C71.0072 (3)0.1268 (5)0.8534 (2)0.0538 (9)
C80.9868 (3)0.3022 (6)0.8160 (3)0.0743 (13)
C90.0871 (3)0.2856 (5)0.4071 (3)0.0707 (11)
H9A0.03900.37090.43510.106*
H9B0.13110.25950.44550.106*
H9C0.12280.33600.35310.106*
C100.0378 (3)0.1138 (5)0.3880 (2)0.0472 (8)
C110.0849 (3)0.0391 (6)0.3503 (2)0.0573 (10)
C120.0389 (3)0.1889 (6)0.3260 (2)0.0669 (11)
H12A0.07520.28500.29770.080*
C130.0618 (3)0.1963 (6)0.3435 (3)0.0733 (12)
H13A0.09430.29840.32950.088*
C140.1137 (3)0.0442 (5)0.3834 (2)0.0609 (10)
H14A0.18140.04460.39500.073*
C150.0650 (3)0.1033 (5)0.4049 (2)0.0509 (9)
C160.1190 (3)0.2561 (6)0.4443 (3)0.0646 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.115 (3)0.095 (3)0.102 (3)0.006 (2)0.033 (2)0.014 (2)
O20.098 (3)0.108 (3)0.108 (3)0.018 (2)0.016 (2)0.001 (2)
O30.099 (3)0.144 (4)0.106 (3)0.008 (3)0.018 (2)0.010 (3)
O40.076 (2)0.106 (3)0.102 (2)0.0009 (19)0.0258 (18)0.004 (2)
N10.115 (3)0.071 (3)0.087 (3)0.004 (2)0.020 (2)0.012 (2)
N20.079 (2)0.064 (2)0.065 (2)0.014 (2)0.0264 (19)0.003 (2)
N30.089 (3)0.085 (3)0.101 (3)0.008 (2)0.023 (2)0.017 (2)
N40.075 (3)0.097 (3)0.084 (3)0.011 (2)0.020 (2)0.005 (3)
C10.064 (3)0.116 (4)0.106 (4)0.020 (3)0.037 (3)0.017 (3)
C20.056 (2)0.053 (2)0.052 (2)0.0032 (17)0.0298 (17)0.0022 (17)
C30.055 (2)0.050 (2)0.0460 (19)0.0118 (17)0.0226 (15)0.0005 (17)
C40.062 (2)0.071 (3)0.073 (3)0.007 (2)0.0210 (19)0.002 (2)
C50.051 (2)0.091 (3)0.083 (3)0.006 (2)0.021 (2)0.003 (3)
C60.068 (3)0.076 (3)0.074 (3)0.016 (2)0.041 (2)0.008 (2)
C70.072 (2)0.045 (2)0.054 (2)0.0078 (18)0.0355 (18)0.0067 (17)
C80.099 (4)0.056 (3)0.072 (3)0.006 (3)0.027 (2)0.005 (2)
C90.070 (3)0.067 (3)0.081 (3)0.009 (2)0.031 (2)0.004 (2)
C100.059 (2)0.0440 (19)0.0454 (18)0.0023 (17)0.0260 (16)0.0087 (16)
C110.053 (2)0.069 (2)0.053 (2)0.0123 (19)0.0170 (16)0.0077 (19)
C120.084 (3)0.056 (2)0.066 (2)0.021 (2)0.029 (2)0.006 (2)
C130.091 (3)0.064 (3)0.075 (3)0.000 (2)0.041 (2)0.008 (2)
C140.058 (2)0.065 (2)0.064 (2)0.0003 (19)0.0224 (18)0.007 (2)
C150.055 (2)0.054 (2)0.048 (2)0.0040 (18)0.0199 (16)0.0038 (17)
C160.064 (3)0.060 (3)0.078 (3)0.004 (2)0.034 (2)0.014 (2)
Geometric parameters (Å, º) top
O1—N21.169 (4)C5—H5A0.9300
O2—N21.224 (4)C6—C71.388 (5)
O3—N41.182 (5)C6—H6A0.9300
O4—N41.200 (5)C7—C81.425 (6)
N1—C81.063 (5)C9—C101.504 (5)
N2—C31.483 (4)C9—H9A0.9600
N3—C161.125 (5)C9—H9B0.9600
N4—C111.518 (5)C9—H9C0.9600
C1—C21.485 (5)C10—C111.376 (5)
C1—H1A0.9600C10—C151.414 (5)
C1—H1B0.9600C11—C121.372 (5)
C1—H1C0.9600C12—C131.384 (5)
C2—C31.399 (5)C12—H12A0.9300
C2—C71.410 (5)C13—C141.410 (5)
C3—C41.396 (5)C13—H13A0.9300
C4—C51.396 (6)C14—C151.363 (5)
C4—H4A0.9300C14—H14A0.9300
C5—C61.304 (6)C15—C161.426 (5)
O1—N2—O2120.7 (4)C6—C7—C8119.0 (4)
O1—N2—C3121.9 (4)C2—C7—C8119.0 (4)
O2—N2—C3117.4 (4)N1—C8—C7171.6 (6)
O3—N4—O4122.9 (5)C10—C9—H9A109.5
O3—N4—C11116.7 (4)C10—C9—H9B109.5
O4—N4—C11119.0 (4)H9A—C9—H9B109.5
C2—C1—H1A109.5C10—C9—H9C109.5
C2—C1—H1B109.5H9A—C9—H9C109.5
H1A—C1—H1B109.5H9B—C9—H9C109.5
C2—C1—H1C109.5C11—C10—C15114.6 (3)
H1A—C1—H1C109.5C11—C10—C9125.2 (3)
H1B—C1—H1C109.5C15—C10—C9120.2 (3)
C3—C2—C7114.3 (3)C12—C11—C10124.5 (4)
C3—C2—C1125.0 (4)C12—C11—N4117.8 (4)
C7—C2—C1120.7 (4)C10—C11—N4117.7 (4)
C4—C3—C2124.2 (3)C11—C12—C13119.7 (4)
C4—C3—N2116.7 (3)C11—C12—H12A120.1
C2—C3—N2119.1 (3)C13—C12—H12A120.1
C3—C4—C5116.3 (4)C12—C13—C14118.0 (4)
C3—C4—H4A121.9C12—C13—H13A121.0
C5—C4—H4A121.9C14—C13—H13A121.0
C6—C5—C4122.7 (4)C15—C14—C13120.3 (4)
C6—C5—H5A118.7C15—C14—H14A119.9
C4—C5—H5A118.7C13—C14—H14A119.9
C5—C6—C7120.7 (4)C14—C15—C10122.8 (3)
C5—C6—H6A119.7C14—C15—C16119.3 (3)
C7—C6—H6A119.7C10—C15—C16117.9 (3)
C6—C7—C2121.9 (4)N3—C16—C15174.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O20.962.082.768 (6)128
C1—H1C···O2i0.962.383.229 (6)147
C4—H4A···O1ii0.932.473.390 (6)171
C9—H9B···O40.962.352.831 (5)110
C9—H9C···O3iii0.962.503.400 (4)156
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6N2O2
Mr162.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)14.025 (3), 7.3860 (15), 15.515 (3)
β (°) 101.80 (3)
V3)1573.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2974, 2852, 1481
Rint0.069
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.170, 1.01
No. of reflections2852
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O20.962.082.768 (6)128.00
C1—H1C···O2i0.962.383.229 (6)147.00
C4—H4A···O1ii0.932.473.390 (6)171.00
C9—H9B···O40.962.352.831 (5)110.00
C9—H9C···O3iii0.962.503.400 (4)156.00
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Tomaru, J. & Murashima, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2413–2416.  CrossRef Web of Science Google Scholar
First citationXinhua, P., Naoyuki, F. & Masayuki, M. (2003). Org. Biomol. Chem. 1, 2326–2335.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds