metal-organic compounds
{4,4′-Dibromo-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethylidyne)]diphenolato-κ4O,N,N′,O′}copper(II)
aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, [Cu(C19H18Br2N2O2)], the CuII ion is in a tetrahedrally distorted planar geometry, involving two N and two O atoms from the tetradentate Schiff base ligand. Intermolecular C—H⋯O hydrogen bonds form an eight-membered R22(8) motif. The dihedral angle betwen two benzene rings is 36.34 (9)°. There are intermolecular Cu⋯Br [3.4566 (5) Å] and Cu⋯·N [3.569 (3) Å] contacts, which are significantly shorter than the sum of van der Waals radii of the relevant atoms. These interactions, along with the intermolecular C—H⋯π and π–π [centroid–centroid distances of 3.709 (1) and 3.968 (2) Å] interactions, link neighbouring molecules into a one-dimensional infinite chain along the c axis.
Related literature
For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For values of van der Waals radii, see: Bondi (1964). For related structures, see: Arıcı et al. (2001); Elmali et al. (2000); Hodgson (1975); Granovski et al. (1993). For the application of transition-metal complexes with Schiff base ligands, see: Blower (1998); Shahrokhian et al. (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808036635/hy2161sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808036635/hy2161Isup2.hkl
The title compound was prepared based on the reported method (Arici et al., 2001). Single crystals suitable for X-ray analysis were obtained from an ethanol solution at room temperature.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C). The highest difference peak is located 0.81 Å from Br2 and the deepest hole is located 0.76 Å from Cu1.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).[Cu(C19H18Br2N2O2)] | Z = 2 |
Mr = 529.71 | F(000) = 522 |
Triclinic, P1 | Dx = 1.883 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1416 (3) Å | Cell parameters from 9921 reflections |
b = 9.6398 (3) Å | θ = 2.2–33.8° |
c = 11.5382 (3) Å | µ = 5.46 mm−1 |
α = 75.210 (2)° | T = 100 K |
β = 78.913 (2)° | Block, red |
γ = 73.435 (2)° | 0.41 × 0.21 × 0.15 mm |
V = 934.42 (5) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 5410 independent reflections |
Radiation source: fine-focus sealed tube | 4345 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 30.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→12 |
Tmin = 0.195, Tmax = 0.443 | k = −13→13 |
29164 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5947P] where P = (Fo2 + 2Fc2)/3 |
5410 reflections | (Δ/σ)max = 0.002 |
235 parameters | Δρmax = 1.27 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Cu(C19H18Br2N2O2)] | γ = 73.435 (2)° |
Mr = 529.71 | V = 934.42 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.1416 (3) Å | Mo Kα radiation |
b = 9.6398 (3) Å | µ = 5.46 mm−1 |
c = 11.5382 (3) Å | T = 100 K |
α = 75.210 (2)° | 0.41 × 0.21 × 0.15 mm |
β = 78.913 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5410 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4345 reflections with I > 2σ(I) |
Tmin = 0.195, Tmax = 0.443 | Rint = 0.037 |
29164 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.27 e Å−3 |
5410 reflections | Δρmin = −0.61 e Å−3 |
235 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.60215 (4) | 0.07295 (3) | 0.63222 (3) | 0.01866 (8) | |
Br1 | 0.15151 (3) | −0.15996 (3) | 1.22034 (2) | 0.02498 (8) | |
Br2 | 0.80441 (4) | 0.43866 (3) | −0.00230 (2) | 0.02942 (9) | |
O1 | 0.4262 (2) | 0.1481 (2) | 0.73927 (16) | 0.0210 (4) | |
O2 | 0.5974 (2) | 0.2636 (2) | 0.53114 (17) | 0.0226 (4) | |
N1 | 0.6688 (3) | −0.1090 (2) | 0.7503 (2) | 0.0195 (4) | |
N2 | 0.6996 (3) | −0.0301 (2) | 0.5008 (2) | 0.0193 (4) | |
C1 | 0.3696 (3) | 0.0739 (3) | 0.8409 (2) | 0.0187 (5) | |
C2 | 0.2233 (3) | 0.1404 (3) | 0.8980 (2) | 0.0216 (5) | |
H2A | 0.1701 | 0.2336 | 0.8604 | 0.026* | |
C3 | 0.1577 (3) | 0.0712 (3) | 1.0073 (2) | 0.0222 (5) | |
H3A | 0.0617 | 0.1176 | 1.0423 | 0.027* | |
C4 | 0.2363 (3) | −0.0692 (3) | 1.0654 (2) | 0.0209 (5) | |
C5 | 0.3765 (3) | −0.1391 (3) | 1.0130 (2) | 0.0202 (5) | |
H5A | 0.4274 | −0.2325 | 1.0520 | 0.024* | |
C6 | 0.4441 (3) | −0.0708 (3) | 0.9004 (2) | 0.0182 (5) | |
C7 | 0.5935 (3) | −0.1509 (3) | 0.8535 (2) | 0.0195 (5) | |
H7A | 0.6390 | −0.2402 | 0.9019 | 0.023* | |
C8 | 0.8231 (3) | −0.1986 (3) | 0.7167 (3) | 0.0220 (5) | |
H8A | 0.8583 | −0.2707 | 0.7877 | 0.026* | |
H8B | 0.8935 | −0.1347 | 0.6889 | 0.026* | |
C9 | 0.8276 (3) | −0.2804 (3) | 0.6167 (2) | 0.0215 (5) | |
C10 | 0.7088 (3) | −0.1897 (3) | 0.5308 (2) | 0.0208 (5) | |
H10A | 0.7350 | −0.2262 | 0.4566 | 0.025* | |
H10B | 0.6084 | −0.2049 | 0.5677 | 0.025* | |
C11 | 0.7379 (3) | 0.0315 (3) | 0.3905 (2) | 0.0191 (5) | |
H11A | 0.7818 | −0.0304 | 0.3364 | 0.023* | |
C12 | 0.7183 (3) | 0.1880 (3) | 0.3441 (2) | 0.0184 (5) | |
C13 | 0.7662 (3) | 0.2337 (3) | 0.2195 (2) | 0.0200 (5) | |
H13A | 0.8138 | 0.1630 | 0.1734 | 0.024* | |
C14 | 0.7432 (3) | 0.3807 (3) | 0.1663 (2) | 0.0206 (5) | |
C15 | 0.6701 (3) | 0.4888 (3) | 0.2346 (2) | 0.0221 (5) | |
H15A | 0.6534 | 0.5887 | 0.1975 | 0.026* | |
C16 | 0.6231 (3) | 0.4473 (3) | 0.3559 (2) | 0.0221 (5) | |
H16A | 0.5755 | 0.5202 | 0.3999 | 0.027* | |
C17 | 0.6454 (3) | 0.2960 (3) | 0.4160 (2) | 0.0193 (5) | |
C18 | 0.7856 (3) | −0.4283 (3) | 0.6727 (3) | 0.0255 (6) | |
H18A | 0.7886 | −0.4782 | 0.6098 | 0.038* | |
H18B | 0.6840 | −0.4106 | 0.7165 | 0.038* | |
H18C | 0.8580 | −0.4889 | 0.7268 | 0.038* | |
C19 | 0.9898 (3) | −0.3061 (3) | 0.5469 (3) | 0.0267 (6) | |
H19A | 0.9944 | −0.3565 | 0.4841 | 0.040* | |
H19B | 1.0627 | −0.3653 | 0.6011 | 0.040* | |
H19C | 1.0142 | −0.2124 | 0.5118 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02588 (17) | 0.01331 (15) | 0.01503 (15) | −0.00383 (12) | −0.00011 (12) | −0.00300 (12) |
Br1 | 0.03447 (15) | 0.02289 (14) | 0.01814 (13) | −0.01260 (11) | 0.00257 (10) | −0.00364 (10) |
Br2 | 0.04858 (18) | 0.01898 (14) | 0.01683 (13) | −0.00907 (12) | 0.00283 (11) | −0.00148 (10) |
O1 | 0.0275 (9) | 0.0161 (9) | 0.0166 (9) | −0.0040 (7) | 0.0010 (7) | −0.0029 (7) |
O2 | 0.0316 (10) | 0.0154 (9) | 0.0182 (9) | −0.0037 (8) | 0.0001 (7) | −0.0036 (7) |
N1 | 0.0240 (11) | 0.0159 (10) | 0.0180 (10) | −0.0030 (8) | −0.0029 (8) | −0.0047 (9) |
N2 | 0.0282 (11) | 0.0131 (10) | 0.0166 (10) | −0.0057 (8) | −0.0023 (8) | −0.0032 (8) |
C1 | 0.0268 (13) | 0.0156 (11) | 0.0162 (11) | −0.0069 (10) | −0.0036 (9) | −0.0055 (9) |
C2 | 0.0268 (13) | 0.0164 (12) | 0.0211 (13) | −0.0055 (10) | −0.0031 (10) | −0.0031 (10) |
C3 | 0.0245 (13) | 0.0219 (13) | 0.0217 (13) | −0.0070 (10) | −0.0001 (10) | −0.0080 (11) |
C4 | 0.0287 (13) | 0.0198 (12) | 0.0161 (12) | −0.0103 (10) | −0.0011 (10) | −0.0037 (10) |
C5 | 0.0286 (13) | 0.0170 (12) | 0.0160 (12) | −0.0079 (10) | −0.0029 (10) | −0.0027 (10) |
C6 | 0.0251 (12) | 0.0154 (11) | 0.0155 (11) | −0.0062 (9) | −0.0023 (9) | −0.0045 (10) |
C7 | 0.0258 (13) | 0.0154 (11) | 0.0171 (12) | −0.0039 (10) | −0.0046 (10) | −0.0028 (10) |
C8 | 0.0236 (12) | 0.0184 (12) | 0.0230 (13) | −0.0033 (10) | −0.0027 (10) | −0.0048 (11) |
C9 | 0.0262 (13) | 0.0162 (12) | 0.0213 (13) | −0.0040 (10) | −0.0029 (10) | −0.0042 (10) |
C10 | 0.0302 (13) | 0.0137 (11) | 0.0185 (12) | −0.0066 (10) | −0.0011 (10) | −0.0036 (10) |
C11 | 0.0256 (12) | 0.0147 (11) | 0.0170 (12) | −0.0049 (9) | −0.0026 (9) | −0.0037 (9) |
C12 | 0.0227 (12) | 0.0152 (11) | 0.0175 (12) | −0.0057 (9) | −0.0010 (9) | −0.0040 (10) |
C13 | 0.0246 (12) | 0.0187 (12) | 0.0173 (12) | −0.0057 (10) | −0.0012 (10) | −0.0056 (10) |
C14 | 0.0272 (13) | 0.0188 (12) | 0.0158 (12) | −0.0082 (10) | −0.0014 (10) | −0.0021 (10) |
C15 | 0.0303 (14) | 0.0137 (11) | 0.0212 (13) | −0.0059 (10) | −0.0039 (10) | −0.0011 (10) |
C16 | 0.0289 (13) | 0.0147 (12) | 0.0217 (13) | −0.0043 (10) | 0.0001 (10) | −0.0056 (10) |
C17 | 0.0232 (12) | 0.0162 (11) | 0.0181 (12) | −0.0052 (9) | −0.0013 (9) | −0.0038 (10) |
C18 | 0.0361 (15) | 0.0163 (12) | 0.0230 (13) | −0.0064 (11) | −0.0042 (11) | −0.0020 (11) |
C19 | 0.0269 (14) | 0.0234 (14) | 0.0287 (15) | −0.0048 (11) | 0.0008 (11) | −0.0083 (12) |
Cu1—O2 | 1.9027 (19) | C8—H8A | 0.9700 |
Cu1—O1 | 1.9146 (18) | C8—H8B | 0.9700 |
Cu1—N1 | 1.948 (2) | C9—C18 | 1.530 (4) |
Cu1—N2 | 1.955 (2) | C9—C19 | 1.531 (4) |
Br1—C4 | 1.902 (3) | C9—C10 | 1.535 (4) |
Br2—C14 | 1.901 (3) | C10—H10A | 0.9700 |
O1—C1 | 1.305 (3) | C10—H10B | 0.9700 |
O2—C17 | 1.303 (3) | C11—C12 | 1.437 (4) |
N1—C7 | 1.286 (3) | C11—H11A | 0.9300 |
N1—C8 | 1.467 (3) | C12—C13 | 1.413 (4) |
N2—C11 | 1.287 (3) | C12—C17 | 1.432 (3) |
N2—C10 | 1.470 (3) | C13—C14 | 1.366 (4) |
C1—C2 | 1.422 (4) | C13—H13A | 0.9300 |
C1—C6 | 1.425 (4) | C14—C15 | 1.405 (4) |
C2—C3 | 1.379 (4) | C15—C16 | 1.373 (4) |
C2—H2A | 0.9300 | C15—H15A | 0.9300 |
C3—C4 | 1.402 (4) | C16—C17 | 1.420 (4) |
C3—H3A | 0.9300 | C16—H16A | 0.9300 |
C4—C5 | 1.371 (4) | C18—H18A | 0.9600 |
C5—C6 | 1.411 (4) | C18—H18B | 0.9600 |
C5—H5A | 0.9300 | C18—H18C | 0.9600 |
C6—C7 | 1.442 (4) | C19—H19A | 0.9600 |
C7—H7A | 0.9300 | C19—H19B | 0.9600 |
C8—C9 | 1.544 (4) | C19—H19C | 0.9600 |
O2—Cu1—O1 | 92.77 (8) | C19—C9—C10 | 110.3 (2) |
O2—Cu1—N1 | 160.11 (9) | C18—C9—C8 | 110.1 (2) |
O1—Cu1—N1 | 93.32 (9) | C19—C9—C8 | 108.4 (2) |
O2—Cu1—N2 | 93.40 (8) | C10—C9—C8 | 110.7 (2) |
O1—Cu1—N2 | 151.78 (9) | N2—C10—C9 | 113.6 (2) |
N1—Cu1—N2 | 90.14 (9) | N2—C10—H10A | 108.8 |
C1—O1—Cu1 | 126.57 (17) | C9—C10—H10A | 108.8 |
C17—O2—Cu1 | 128.01 (16) | N2—C10—H10B | 108.8 |
C7—N1—C8 | 119.4 (2) | C9—C10—H10B | 108.8 |
C7—N1—Cu1 | 125.97 (19) | H10A—C10—H10B | 107.7 |
C8—N1—Cu1 | 114.58 (17) | N2—C11—C12 | 125.4 (2) |
C11—N2—C10 | 118.7 (2) | N2—C11—H11A | 117.3 |
C11—N2—Cu1 | 125.90 (18) | C12—C11—H11A | 117.3 |
C10—N2—Cu1 | 114.85 (16) | C13—C12—C17 | 120.1 (2) |
O1—C1—C2 | 118.6 (2) | C13—C12—C11 | 116.7 (2) |
O1—C1—C6 | 124.7 (2) | C17—C12—C11 | 123.1 (2) |
C2—C1—C6 | 116.7 (2) | C14—C13—C12 | 120.7 (2) |
C3—C2—C1 | 122.2 (3) | C14—C13—H13A | 119.7 |
C3—C2—H2A | 118.9 | C12—C13—H13A | 119.7 |
C1—C2—H2A | 118.9 | C13—C14—C15 | 120.3 (2) |
C2—C3—C4 | 119.7 (2) | C13—C14—Br2 | 119.65 (19) |
C2—C3—H3A | 120.1 | C15—C14—Br2 | 120.0 (2) |
C4—C3—H3A | 120.1 | C16—C15—C14 | 120.2 (2) |
C5—C4—C3 | 120.3 (2) | C16—C15—H15A | 119.9 |
C5—C4—Br1 | 119.8 (2) | C14—C15—H15A | 119.9 |
C3—C4—Br1 | 119.8 (2) | C15—C16—C17 | 121.8 (2) |
C4—C5—C6 | 120.7 (3) | C15—C16—H16A | 119.1 |
C4—C5—H5A | 119.7 | C17—C16—H16A | 119.1 |
C6—C5—H5A | 119.7 | O2—C17—C16 | 118.9 (2) |
C5—C6—C1 | 120.4 (2) | O2—C17—C12 | 124.1 (2) |
C5—C6—C7 | 116.8 (2) | C16—C17—C12 | 117.0 (2) |
C1—C6—C7 | 122.7 (2) | C9—C18—H18A | 109.5 |
N1—C7—C6 | 125.3 (2) | C9—C18—H18B | 109.5 |
N1—C7—H7A | 117.3 | H18A—C18—H18B | 109.5 |
C6—C7—H7A | 117.3 | C9—C18—H18C | 109.5 |
N1—C8—C9 | 112.7 (2) | H18A—C18—H18C | 109.5 |
N1—C8—H8A | 109.0 | H18B—C18—H18C | 109.5 |
C9—C8—H8A | 109.0 | C9—C19—H19A | 109.5 |
N1—C8—H8B | 109.0 | C9—C19—H19B | 109.5 |
C9—C8—H8B | 109.0 | H19A—C19—H19B | 109.5 |
H8A—C8—H8B | 107.8 | C9—C19—H19C | 109.5 |
C18—C9—C19 | 110.4 (2) | H19A—C19—H19C | 109.5 |
C18—C9—C10 | 106.9 (2) | H19B—C19—H19C | 109.5 |
O2—Cu1—O1—C1 | −174.0 (2) | C8—N1—C7—C6 | 177.2 (2) |
N1—Cu1—O1—C1 | −12.9 (2) | Cu1—N1—C7—C6 | 0.6 (4) |
N2—Cu1—O1—C1 | 83.6 (3) | C5—C6—C7—N1 | 176.6 (2) |
O1—Cu1—O2—C17 | −151.9 (2) | C1—C6—C7—N1 | −6.7 (4) |
N1—Cu1—O2—C17 | 100.4 (3) | C7—N1—C8—C9 | 108.8 (3) |
N2—Cu1—O2—C17 | 0.6 (2) | Cu1—N1—C8—C9 | −74.2 (2) |
O2—Cu1—N1—C7 | 114.8 (3) | N1—C8—C9—C18 | −86.0 (3) |
O1—Cu1—N1—C7 | 7.2 (2) | N1—C8—C9—C19 | 153.1 (2) |
N2—Cu1—N1—C7 | −144.8 (2) | N1—C8—C9—C10 | 32.0 (3) |
O2—Cu1—N1—C8 | −61.9 (3) | C11—N2—C10—C9 | 115.7 (3) |
O1—Cu1—N1—C8 | −169.52 (17) | Cu1—N2—C10—C9 | −72.2 (2) |
N2—Cu1—N1—C8 | 38.50 (18) | C18—C9—C10—N2 | 160.8 (2) |
O2—Cu1—N2—C11 | 0.1 (2) | C19—C9—C10—N2 | −79.2 (3) |
O1—Cu1—N2—C11 | 102.4 (3) | C8—C9—C10—N2 | 40.8 (3) |
N1—Cu1—N2—C11 | −160.3 (2) | C10—N2—C11—C12 | 172.3 (2) |
O2—Cu1—N2—C10 | −171.27 (18) | Cu1—N2—C11—C12 | 1.2 (4) |
O1—Cu1—N2—C10 | −69.0 (3) | N2—C11—C12—C13 | −179.2 (3) |
N1—Cu1—N2—C10 | 28.31 (19) | N2—C11—C12—C17 | −3.2 (4) |
Cu1—O1—C1—C2 | −169.15 (18) | C17—C12—C13—C14 | −0.2 (4) |
Cu1—O1—C1—C6 | 11.1 (4) | C11—C12—C13—C14 | 175.9 (2) |
O1—C1—C2—C3 | −178.0 (2) | C12—C13—C14—C15 | −0.6 (4) |
C6—C1—C2—C3 | 1.9 (4) | C12—C13—C14—Br2 | −178.50 (19) |
C1—C2—C3—C4 | 0.1 (4) | C13—C14—C15—C16 | 0.9 (4) |
C2—C3—C4—C5 | −1.3 (4) | Br2—C14—C15—C16 | 178.8 (2) |
C2—C3—C4—Br1 | 176.5 (2) | C14—C15—C16—C17 | −0.4 (4) |
C3—C4—C5—C6 | 0.4 (4) | Cu1—O2—C17—C16 | 176.52 (18) |
Br1—C4—C5—C6 | −177.39 (19) | Cu1—O2—C17—C12 | −2.5 (4) |
C4—C5—C6—C1 | 1.7 (4) | C15—C16—C17—O2 | −179.5 (2) |
C4—C5—C6—C7 | 178.5 (2) | C15—C16—C17—C12 | −0.4 (4) |
O1—C1—C6—C5 | 177.1 (2) | C13—C12—C17—O2 | 179.8 (2) |
C2—C1—C6—C5 | −2.7 (4) | C11—C12—C17—O2 | 3.9 (4) |
O1—C1—C6—C7 | 0.5 (4) | C13—C12—C17—C16 | 0.7 (4) |
C2—C1—C6—C7 | −179.3 (2) | C11—C12—C17—C16 | −175.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.44 | 3.342 (3) | 163 |
C10—H10B···Cg1ii | 0.97 | 2.50 | 3.324 (3) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C19H18Br2N2O2)] |
Mr | 529.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.1416 (3), 9.6398 (3), 11.5382 (3) |
α, β, γ (°) | 75.210 (2), 78.913 (2), 73.435 (2) |
V (Å3) | 934.42 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.46 |
Crystal size (mm) | 0.41 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.195, 0.443 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29164, 5410, 4345 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 1.07 |
No. of reflections | 5410 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.27, −0.61 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.44 | 3.342 (3) | 163 |
C10—H10B···Cg1ii | 0.97 | 2.50 | 3.324 (3) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arici, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812–814. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem. 23, 109–112. CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173–202. CrossRef CAS Google Scholar
Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Elmali et al., 2000; Granovski et al.,1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties (Blower, 1998; Shahrokhian et al., 2000). Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).
In the title compound (Fig. 1), the CuII ion shows a planar geometry distorted towards tetrahedral, which is defined by two imine N atoms and two phenolate O atoms of the tetradentate Schiff base ligand (Table 1). Intermolecular C—H···O hydrogen bonds form an eight-membered ring R22(8) motif (Fig. 2) (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987) and are comparable with the related structure (Arici et al., 2001). The dihedral angle between two benzene rings is 36.34 (9)°. The chelate ring composed of Cu1, N1, C8, C9, C10 and N2 atoms has a distorted boat conformation with puckering paremeters of Q = 0.807 (3) Å, Θ = 91.1 (2)° and Φ = 264.58 (17)°. The interesting feature of the crystal structure is short intermolecular Cu1···Br1iii [3.4566 (5) Å] and Cu1···N2ii [3.569 (3) Å] interactions [symmetry codes: (ii) 1 - x, -y, 1 - z; (iii) 1 - x, -y, 2 - z], which are significantly shorter than the sum of van der Waals radii of the relevant atoms [Cu: 2.32; Br: 1.85; N: 1.55 Å (Bondi, 1964; Spek, 2003)]. These interactions along with the intermolecular C—H···π (Table 2) and π–π interactions [centroid–centroid distances: Cg2···Cg3iii = 3.709 (1) and Cg2···Cg2iii = 3.968 (2) Å; Cg2 = centroid of the C1–C6 ring and Cg3 = centroid of the Cu1, N1, O1, C1, C6, C7 ring] link the neighbouring molecules into one-dimensional infinite chains along the c axis (Fig. 3).