metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1541-m1542

{4,4′-Di­bromo-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}copper(II)

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 October 2008; accepted 7 November 2008; online 13 November 2008)

In the title compound, [Cu(C19H18Br2N2O2)], the CuII ion is in a tetra­hedrally distorted planar geometry, involving two N and two O atoms from the tetra­dentate Schiff base ligand. Inter­molecular C—H⋯O hydrogen bonds form an eight-membered R22(8) motif. The dihedral angle betwen two benzene rings is 36.34 (9)°. There are inter­molecular Cu⋯Br [3.4566 (5) Å] and Cu⋯·N [3.569 (3) Å] contacts, which are significantly shorter than the sum of van der Waals radii of the relevant atoms. These inter­actions, along with the inter­molecular C—H⋯π and ππ [centroid–centroid distances of 3.709 (1) and 3.968 (2) Å] inter­actions, link neighbouring mol­ecules into a one-dimensional infinite chain along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For values of van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For related structures, see: Arıcı et al. (2001[Arici, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812-814.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]); Hodgson (1975[Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173-202.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For the application of transition-metal complexes with Schiff base ligands, see: Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H18Br2N2O2)]

  • Mr = 529.71

  • Triclinic, [P \overline 1]

  • a = 9.1416 (3) Å

  • b = 9.6398 (3) Å

  • c = 11.5382 (3) Å

  • α = 75.210 (2)°

  • β = 78.913 (2)°

  • γ = 73.435 (2)°

  • V = 934.42 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.195, Tmax = 0.443

  • 29164 measured reflections

  • 5410 independent reflections

  • 4345 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.07

  • 5410 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.9027 (19)
Cu1—O1 1.9146 (18)
Cu1—N1 1.948 (2)
Cu1—N2 1.955 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.93 2.44 3.342 (3) 163
C10—H10BCg1ii 0.97 2.50 3.324 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1. Cg1 is the centroid of the Cu1, N2, O2, C11, C12, C17 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Elmali et al., 2000; Granovski et al.,1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties (Blower, 1998; Shahrokhian et al., 2000). Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (Fig. 1), the CuII ion shows a planar geometry distorted towards tetrahedral, which is defined by two imine N atoms and two phenolate O atoms of the tetradentate Schiff base ligand (Table 1). Intermolecular C—H···O hydrogen bonds form an eight-membered ring R22(8) motif (Fig. 2) (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987) and are comparable with the related structure (Arici et al., 2001). The dihedral angle between two benzene rings is 36.34 (9)°. The chelate ring composed of Cu1, N1, C8, C9, C10 and N2 atoms has a distorted boat conformation with puckering paremeters of Q = 0.807 (3) Å, Θ = 91.1 (2)° and Φ = 264.58 (17)°. The interesting feature of the crystal structure is short intermolecular Cu1···Br1iii [3.4566 (5) Å] and Cu1···N2ii [3.569 (3) Å] interactions [symmetry codes: (ii) 1 - x, -y, 1 - z; (iii) 1 - x, -y, 2 - z], which are significantly shorter than the sum of van der Waals radii of the relevant atoms [Cu: 2.32; Br: 1.85; N: 1.55 Å (Bondi, 1964; Spek, 2003)]. These interactions along with the intermolecular C—H···π (Table 2) and ππ interactions [centroid–centroid distances: Cg2···Cg3iii = 3.709 (1) and Cg2···Cg2iii = 3.968 (2) Å; Cg2 = centroid of the C1–C6 ring and Cg3 = centroid of the Cu1, N1, O1, C1, C6, C7 ring] link the neighbouring molecules into one-dimensional infinite chains along the c axis (Fig. 3).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For values of van der Waals radii, see: Bondi (1964). For related structures, see: Arici et al. (2001); Elmali et al. (2000); Hodgson (1975); Granovski et al. (1993). For the application of transition-metal complexes with Schiff base ligands, see: Blower (1998); Shahrokhian et al. (2000). Cg1 is the centroid of the Cu1, N2, O2, C11, C12, C17 ring.

Experimental top

The title compound was prepared based on the reported method (Arici et al., 2001). Single crystals suitable for X-ray analysis were obtained from an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C). The highest difference peak is located 0.81 Å from Br2 and the deepest hole is located 0.76 Å from Cu1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the hydrogen-bond motif R22(8).
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed down the b axis, showing one-dimensional infinite chains along the c axis. Intermolecular Cu···Br and Cu···N interactions are shown as dashed lines.
{4,4'-Dibromo-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}copper(II) top
Crystal data top
[Cu(C19H18Br2N2O2)]Z = 2
Mr = 529.71F(000) = 522
Triclinic, P1Dx = 1.883 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1416 (3) ÅCell parameters from 9921 reflections
b = 9.6398 (3) Åθ = 2.2–33.8°
c = 11.5382 (3) ŵ = 5.46 mm1
α = 75.210 (2)°T = 100 K
β = 78.913 (2)°Block, red
γ = 73.435 (2)°0.41 × 0.21 × 0.15 mm
V = 934.42 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5410 independent reflections
Radiation source: fine-focus sealed tube4345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.195, Tmax = 0.443k = 1313
29164 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5947P]
where P = (Fo2 + 2Fc2)/3
5410 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C19H18Br2N2O2)]γ = 73.435 (2)°
Mr = 529.71V = 934.42 (5) Å3
Triclinic, P1Z = 2
a = 9.1416 (3) ÅMo Kα radiation
b = 9.6398 (3) ŵ = 5.46 mm1
c = 11.5382 (3) ÅT = 100 K
α = 75.210 (2)°0.41 × 0.21 × 0.15 mm
β = 78.913 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4345 reflections with I > 2σ(I)
Tmin = 0.195, Tmax = 0.443Rint = 0.037
29164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 1.27 e Å3
5410 reflectionsΔρmin = 0.61 e Å3
235 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60215 (4)0.07295 (3)0.63222 (3)0.01866 (8)
Br10.15151 (3)0.15996 (3)1.22034 (2)0.02498 (8)
Br20.80441 (4)0.43866 (3)0.00230 (2)0.02942 (9)
O10.4262 (2)0.1481 (2)0.73927 (16)0.0210 (4)
O20.5974 (2)0.2636 (2)0.53114 (17)0.0226 (4)
N10.6688 (3)0.1090 (2)0.7503 (2)0.0195 (4)
N20.6996 (3)0.0301 (2)0.5008 (2)0.0193 (4)
C10.3696 (3)0.0739 (3)0.8409 (2)0.0187 (5)
C20.2233 (3)0.1404 (3)0.8980 (2)0.0216 (5)
H2A0.17010.23360.86040.026*
C30.1577 (3)0.0712 (3)1.0073 (2)0.0222 (5)
H3A0.06170.11761.04230.027*
C40.2363 (3)0.0692 (3)1.0654 (2)0.0209 (5)
C50.3765 (3)0.1391 (3)1.0130 (2)0.0202 (5)
H5A0.42740.23251.05200.024*
C60.4441 (3)0.0708 (3)0.9004 (2)0.0182 (5)
C70.5935 (3)0.1509 (3)0.8535 (2)0.0195 (5)
H7A0.63900.24020.90190.023*
C80.8231 (3)0.1986 (3)0.7167 (3)0.0220 (5)
H8A0.85830.27070.78770.026*
H8B0.89350.13470.68890.026*
C90.8276 (3)0.2804 (3)0.6167 (2)0.0215 (5)
C100.7088 (3)0.1897 (3)0.5308 (2)0.0208 (5)
H10A0.73500.22620.45660.025*
H10B0.60840.20490.56770.025*
C110.7379 (3)0.0315 (3)0.3905 (2)0.0191 (5)
H11A0.78180.03040.33640.023*
C120.7183 (3)0.1880 (3)0.3441 (2)0.0184 (5)
C130.7662 (3)0.2337 (3)0.2195 (2)0.0200 (5)
H13A0.81380.16300.17340.024*
C140.7432 (3)0.3807 (3)0.1663 (2)0.0206 (5)
C150.6701 (3)0.4888 (3)0.2346 (2)0.0221 (5)
H15A0.65340.58870.19750.026*
C160.6231 (3)0.4473 (3)0.3559 (2)0.0221 (5)
H16A0.57550.52020.39990.027*
C170.6454 (3)0.2960 (3)0.4160 (2)0.0193 (5)
C180.7856 (3)0.4283 (3)0.6727 (3)0.0255 (6)
H18A0.78860.47820.60980.038*
H18B0.68400.41060.71650.038*
H18C0.85800.48890.72680.038*
C190.9898 (3)0.3061 (3)0.5469 (3)0.0267 (6)
H19A0.99440.35650.48410.040*
H19B1.06270.36530.60110.040*
H19C1.01420.21240.51180.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02588 (17)0.01331 (15)0.01503 (15)0.00383 (12)0.00011 (12)0.00300 (12)
Br10.03447 (15)0.02289 (14)0.01814 (13)0.01260 (11)0.00257 (10)0.00364 (10)
Br20.04858 (18)0.01898 (14)0.01683 (13)0.00907 (12)0.00283 (11)0.00148 (10)
O10.0275 (9)0.0161 (9)0.0166 (9)0.0040 (7)0.0010 (7)0.0029 (7)
O20.0316 (10)0.0154 (9)0.0182 (9)0.0037 (8)0.0001 (7)0.0036 (7)
N10.0240 (11)0.0159 (10)0.0180 (10)0.0030 (8)0.0029 (8)0.0047 (9)
N20.0282 (11)0.0131 (10)0.0166 (10)0.0057 (8)0.0023 (8)0.0032 (8)
C10.0268 (13)0.0156 (11)0.0162 (11)0.0069 (10)0.0036 (9)0.0055 (9)
C20.0268 (13)0.0164 (12)0.0211 (13)0.0055 (10)0.0031 (10)0.0031 (10)
C30.0245 (13)0.0219 (13)0.0217 (13)0.0070 (10)0.0001 (10)0.0080 (11)
C40.0287 (13)0.0198 (12)0.0161 (12)0.0103 (10)0.0011 (10)0.0037 (10)
C50.0286 (13)0.0170 (12)0.0160 (12)0.0079 (10)0.0029 (10)0.0027 (10)
C60.0251 (12)0.0154 (11)0.0155 (11)0.0062 (9)0.0023 (9)0.0045 (10)
C70.0258 (13)0.0154 (11)0.0171 (12)0.0039 (10)0.0046 (10)0.0028 (10)
C80.0236 (12)0.0184 (12)0.0230 (13)0.0033 (10)0.0027 (10)0.0048 (11)
C90.0262 (13)0.0162 (12)0.0213 (13)0.0040 (10)0.0029 (10)0.0042 (10)
C100.0302 (13)0.0137 (11)0.0185 (12)0.0066 (10)0.0011 (10)0.0036 (10)
C110.0256 (12)0.0147 (11)0.0170 (12)0.0049 (9)0.0026 (9)0.0037 (9)
C120.0227 (12)0.0152 (11)0.0175 (12)0.0057 (9)0.0010 (9)0.0040 (10)
C130.0246 (12)0.0187 (12)0.0173 (12)0.0057 (10)0.0012 (10)0.0056 (10)
C140.0272 (13)0.0188 (12)0.0158 (12)0.0082 (10)0.0014 (10)0.0021 (10)
C150.0303 (14)0.0137 (11)0.0212 (13)0.0059 (10)0.0039 (10)0.0011 (10)
C160.0289 (13)0.0147 (12)0.0217 (13)0.0043 (10)0.0001 (10)0.0056 (10)
C170.0232 (12)0.0162 (11)0.0181 (12)0.0052 (9)0.0013 (9)0.0038 (10)
C180.0361 (15)0.0163 (12)0.0230 (13)0.0064 (11)0.0042 (11)0.0020 (11)
C190.0269 (14)0.0234 (14)0.0287 (15)0.0048 (11)0.0008 (11)0.0083 (12)
Geometric parameters (Å, º) top
Cu1—O21.9027 (19)C8—H8A0.9700
Cu1—O11.9146 (18)C8—H8B0.9700
Cu1—N11.948 (2)C9—C181.530 (4)
Cu1—N21.955 (2)C9—C191.531 (4)
Br1—C41.902 (3)C9—C101.535 (4)
Br2—C141.901 (3)C10—H10A0.9700
O1—C11.305 (3)C10—H10B0.9700
O2—C171.303 (3)C11—C121.437 (4)
N1—C71.286 (3)C11—H11A0.9300
N1—C81.467 (3)C12—C131.413 (4)
N2—C111.287 (3)C12—C171.432 (3)
N2—C101.470 (3)C13—C141.366 (4)
C1—C21.422 (4)C13—H13A0.9300
C1—C61.425 (4)C14—C151.405 (4)
C2—C31.379 (4)C15—C161.373 (4)
C2—H2A0.9300C15—H15A0.9300
C3—C41.402 (4)C16—C171.420 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.371 (4)C18—H18A0.9600
C5—C61.411 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.442 (4)C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C91.544 (4)C19—H19C0.9600
O2—Cu1—O192.77 (8)C19—C9—C10110.3 (2)
O2—Cu1—N1160.11 (9)C18—C9—C8110.1 (2)
O1—Cu1—N193.32 (9)C19—C9—C8108.4 (2)
O2—Cu1—N293.40 (8)C10—C9—C8110.7 (2)
O1—Cu1—N2151.78 (9)N2—C10—C9113.6 (2)
N1—Cu1—N290.14 (9)N2—C10—H10A108.8
C1—O1—Cu1126.57 (17)C9—C10—H10A108.8
C17—O2—Cu1128.01 (16)N2—C10—H10B108.8
C7—N1—C8119.4 (2)C9—C10—H10B108.8
C7—N1—Cu1125.97 (19)H10A—C10—H10B107.7
C8—N1—Cu1114.58 (17)N2—C11—C12125.4 (2)
C11—N2—C10118.7 (2)N2—C11—H11A117.3
C11—N2—Cu1125.90 (18)C12—C11—H11A117.3
C10—N2—Cu1114.85 (16)C13—C12—C17120.1 (2)
O1—C1—C2118.6 (2)C13—C12—C11116.7 (2)
O1—C1—C6124.7 (2)C17—C12—C11123.1 (2)
C2—C1—C6116.7 (2)C14—C13—C12120.7 (2)
C3—C2—C1122.2 (3)C14—C13—H13A119.7
C3—C2—H2A118.9C12—C13—H13A119.7
C1—C2—H2A118.9C13—C14—C15120.3 (2)
C2—C3—C4119.7 (2)C13—C14—Br2119.65 (19)
C2—C3—H3A120.1C15—C14—Br2120.0 (2)
C4—C3—H3A120.1C16—C15—C14120.2 (2)
C5—C4—C3120.3 (2)C16—C15—H15A119.9
C5—C4—Br1119.8 (2)C14—C15—H15A119.9
C3—C4—Br1119.8 (2)C15—C16—C17121.8 (2)
C4—C5—C6120.7 (3)C15—C16—H16A119.1
C4—C5—H5A119.7C17—C16—H16A119.1
C6—C5—H5A119.7O2—C17—C16118.9 (2)
C5—C6—C1120.4 (2)O2—C17—C12124.1 (2)
C5—C6—C7116.8 (2)C16—C17—C12117.0 (2)
C1—C6—C7122.7 (2)C9—C18—H18A109.5
N1—C7—C6125.3 (2)C9—C18—H18B109.5
N1—C7—H7A117.3H18A—C18—H18B109.5
C6—C7—H7A117.3C9—C18—H18C109.5
N1—C8—C9112.7 (2)H18A—C18—H18C109.5
N1—C8—H8A109.0H18B—C18—H18C109.5
C9—C8—H8A109.0C9—C19—H19A109.5
N1—C8—H8B109.0C9—C19—H19B109.5
C9—C8—H8B109.0H19A—C19—H19B109.5
H8A—C8—H8B107.8C9—C19—H19C109.5
C18—C9—C19110.4 (2)H19A—C19—H19C109.5
C18—C9—C10106.9 (2)H19B—C19—H19C109.5
O2—Cu1—O1—C1174.0 (2)C8—N1—C7—C6177.2 (2)
N1—Cu1—O1—C112.9 (2)Cu1—N1—C7—C60.6 (4)
N2—Cu1—O1—C183.6 (3)C5—C6—C7—N1176.6 (2)
O1—Cu1—O2—C17151.9 (2)C1—C6—C7—N16.7 (4)
N1—Cu1—O2—C17100.4 (3)C7—N1—C8—C9108.8 (3)
N2—Cu1—O2—C170.6 (2)Cu1—N1—C8—C974.2 (2)
O2—Cu1—N1—C7114.8 (3)N1—C8—C9—C1886.0 (3)
O1—Cu1—N1—C77.2 (2)N1—C8—C9—C19153.1 (2)
N2—Cu1—N1—C7144.8 (2)N1—C8—C9—C1032.0 (3)
O2—Cu1—N1—C861.9 (3)C11—N2—C10—C9115.7 (3)
O1—Cu1—N1—C8169.52 (17)Cu1—N2—C10—C972.2 (2)
N2—Cu1—N1—C838.50 (18)C18—C9—C10—N2160.8 (2)
O2—Cu1—N2—C110.1 (2)C19—C9—C10—N279.2 (3)
O1—Cu1—N2—C11102.4 (3)C8—C9—C10—N240.8 (3)
N1—Cu1—N2—C11160.3 (2)C10—N2—C11—C12172.3 (2)
O2—Cu1—N2—C10171.27 (18)Cu1—N2—C11—C121.2 (4)
O1—Cu1—N2—C1069.0 (3)N2—C11—C12—C13179.2 (3)
N1—Cu1—N2—C1028.31 (19)N2—C11—C12—C173.2 (4)
Cu1—O1—C1—C2169.15 (18)C17—C12—C13—C140.2 (4)
Cu1—O1—C1—C611.1 (4)C11—C12—C13—C14175.9 (2)
O1—C1—C2—C3178.0 (2)C12—C13—C14—C150.6 (4)
C6—C1—C2—C31.9 (4)C12—C13—C14—Br2178.50 (19)
C1—C2—C3—C40.1 (4)C13—C14—C15—C160.9 (4)
C2—C3—C4—C51.3 (4)Br2—C14—C15—C16178.8 (2)
C2—C3—C4—Br1176.5 (2)C14—C15—C16—C170.4 (4)
C3—C4—C5—C60.4 (4)Cu1—O2—C17—C16176.52 (18)
Br1—C4—C5—C6177.39 (19)Cu1—O2—C17—C122.5 (4)
C4—C5—C6—C11.7 (4)C15—C16—C17—O2179.5 (2)
C4—C5—C6—C7178.5 (2)C15—C16—C17—C120.4 (4)
O1—C1—C6—C5177.1 (2)C13—C12—C17—O2179.8 (2)
C2—C1—C6—C52.7 (4)C11—C12—C17—O23.9 (4)
O1—C1—C6—C70.5 (4)C13—C12—C17—C160.7 (4)
C2—C1—C6—C7179.3 (2)C11—C12—C17—C16175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.443.342 (3)163
C10—H10B···Cg1ii0.972.503.324 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C19H18Br2N2O2)]
Mr529.71
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1416 (3), 9.6398 (3), 11.5382 (3)
α, β, γ (°)75.210 (2), 78.913 (2), 73.435 (2)
V3)934.42 (5)
Z2
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.41 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.195, 0.443
No. of measured, independent and
observed [I > 2σ(I)] reflections
29164, 5410, 4345
Rint0.037
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.07
No. of reflections5410
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 0.61

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—O21.9027 (19)Cu1—N11.948 (2)
Cu1—O11.9146 (18)Cu1—N21.955 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.443.342 (3)163
C10—H10B···Cg1ii0.972.503.324 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArici, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812–814.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173–202.  CrossRef CAS Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1541-m1542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds