metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(5,5-di­phenyl­hydantoinato-κN3)bis­­(propane-1,2-di­amine-κ2N,N′)nickel(II)

aHuaihai Institute of Technology, Jiangsu 222005, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: huxilan836@sohu.com

(Received 3 November 2008; accepted 19 November 2008; online 29 November 2008)

The asymmetric unit of the title complex, [Ni(pht)2(pn)2] (pht is 5,5-diphenyl­hydantoinate and pn is propane-1,2-diamine) or [Ni(C15H11N2O2)2(C3H10N2)2], contains one-half [Ni(pht)2(pn)2] mol­ecule. The NiII atom is situated on a crystallographic center of inversion and shows a distorted octa­hedral coordination geometry. A three-dimensional network structure is assembled by inter- and intra­molecular N—H⋯O=C inter­actions.

Related literature

For general background see Akitsu et al. (1997[Akitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821-827.]), Milne et al. (1999[Milne, P., Ho, M. & Weaver, D. F. (1999). J. Mol. Struct. (Theochem), 492, 19-28.]). For related structures see Akitsu & Einaga et al. (2005[Akitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183-m186.]); Hu et al. (2006a[Hu, X.-L., Xu, X.-Y., Wang, D.-Q. & Xu, T.-T. (2006a). Acta Cryst. E62, m1922-m1923.],b[Hu, X., Xu, X., Xu, T. & Wang, D. (2006b). Acta Cryst. E62, m2221-m2223.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H11N2O2)2(C3H10N2)2]

  • Mr = 709.49

  • Triclinic, [P \overline 1]

  • a = 8.581 (1) Å

  • b = 9.731 (1) Å

  • c = 12.036 (2) Å

  • α = 100.602 (2)°

  • β = 90.298 (1)°

  • γ = 113.951 (2)°

  • V = 899.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 298 (2) K

  • 0.47 × 0.45 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.769, Tmax = 0.816

  • 4760 measured reflections

  • 3164 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.09

  • 3164 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′B⋯O2 0.90 2.55 3.231 (2) 133
N4—H4A⋯O1 0.90 2.26 2.983 (2) 138

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5,5-Diphenylimidazoline-2,4-dione (Hpht) is a widely used drug in the treatment of epilepsy. It should also be an excellent ligand for transition metal complexes (Milne et al.,1999; Akitsu et al.,1997; Akitsu & Einaga, 2005). We have therefore designed and synthesized a series of complexes with 5,5-diphenylhydantoinato ligands (Hu et al., 2006a).

The title compound (Fig. 1) consists of a neutral [Ni(pht)2(pn)2] complex molecule. The nickel atom is situated at the crystallographic center of inversion and is coordinated by two nitrogen atoms from two pht ligands and four nitrogen atoms from two pn ligands. The metal atom therefore adopts a distorted octahedral NiN6 coordination environment with a dihedral angle of 86.9 (1)° between N3—N3A—N4A—N4 and the hydantoin ring and dihedral angles between N3—N3A—N4A—N4 and the pht groups of 51.7 (1)° (C4 to C9) and 39.0 (1)° (C10 to C15), respectively. The Ni—N bond distances lie in the range of 2.096 (2) Å to 2.125 (2) Å. Intramolecular hydrogen bonds (Table 1) serve to stabilize the octahedral geometry. Adjacent molecules are linked by intermolecular hydrogen bonds along the crystallographic a axis. A similar hydrogen-bonding pattern is also found in the above-mentioned related complexes. The complex shows a three-dimensional network structure assembled by additional intermolecular N—H···O hydrogen bonds between the diamine ligand and the hydantoin ring.

Related literature top

For general background see Akitsu et al. (1997), Milne et al. (1999); for related structures see Akitsu & Einaga et al. (2005); Hu et al. (2006a,b).

Experimental top

To a solution of Hpht (1.00 mmol) in methanol (10 ml) was added Ni(OAc)2 × 4 H2O (0.5 mmol) and a solution of propane-1,2-diamine (1 mmol) in methanol (10 ml). Then the mixture was sealed in a 25 ml PTFE-lined stainless steel autoclave and heated to 423 K for 40 h, the fill rate being 80%. After cooling to room temperature, purple single crystals of the title compound were obtained by slow evaporation from the filtrate. Analysis, calculated for C36H42N8NiO4: C 61.66, H 6.01, N 16.26; found: C 60.94, H 5.97, N 15.78%.

Refinement top

The space group was assigned from the systematic absences. All H atoms were placed at calculated positions, with N—H = 0.86–0.89 Å and Uiso(H) values of 1.2Ueq(N), and C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methyne) and 0.93 Å (aryl), respectively, with Uiso(H) values of 1.2 Ueq(C) (methylene, methyne, aryl) or 1.5 Ueq(C) (methyl).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title complex.
trans-Bis(5,5-diphenylhydantoinato-κN3)bis(propane-1,2- diamine-κ2N,N')nickel(II) top
Crystal data top
[Ni(C15H11N2O2)2(C3H10N2)2]Z = 1
Mr = 709.49F(000) = 374
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.581 (1) ÅCell parameters from 3393 reflections
b = 9.731 (1) Åθ = 2.6–28.2°
c = 12.036 (2) ŵ = 0.59 mm1
α = 100.602 (2)°T = 298 K
β = 90.298 (1)°Block, violet
γ = 113.951 (2)°0.47 × 0.45 × 0.36 mm
V = 899.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3164 independent reflections
Radiation source: fine-focus sealed tube2908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.769, Tmax = 0.816k = 1111
4760 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2523P]
where P = (Fo2 + 2Fc2)/3
3164 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C15H11N2O2)2(C3H10N2)2]γ = 113.951 (2)°
Mr = 709.49V = 899.2 (2) Å3
Triclinic, P1Z = 1
a = 8.581 (1) ÅMo Kα radiation
b = 9.731 (1) ŵ = 0.59 mm1
c = 12.036 (2) ÅT = 298 K
α = 100.602 (2)°0.47 × 0.45 × 0.36 mm
β = 90.298 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2908 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.816Rint = 0.011
4760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
3164 reflectionsΔρmin = 0.22 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.02926 (10)
N10.09328 (19)0.14829 (16)0.62697 (11)0.0390 (4)
H10.00970.05870.61400.047*
N20.31918 (17)0.35330 (15)0.59323 (11)0.0327 (3)
N30.70216 (19)0.52417 (18)0.61129 (13)0.0448 (4)
H3A0.77660.62350.63020.054*0.749 (12)
H3B0.66170.49230.67510.054*0.749 (12)
H3'A0.79900.60470.60390.054*0.251 (12)
H3'B0.67660.53640.68390.054*0.251 (12)
N40.5406 (2)0.31168 (17)0.41315 (13)0.0426 (4)
H4A0.44020.22910.39320.051*0.749 (12)
H4B0.59270.33330.34990.051*0.749 (12)
H4'A0.45810.22500.42720.051*0.251 (12)
H4'B0.53060.30810.33810.051*0.251 (12)
O10.17051 (16)0.14829 (14)0.44533 (10)0.0465 (3)
O20.39713 (17)0.50006 (14)0.77351 (10)0.0473 (3)
C10.1917 (2)0.21085 (18)0.54757 (13)0.0337 (4)
C20.3030 (2)0.38406 (18)0.70541 (13)0.0329 (4)
C30.1457 (2)0.25095 (18)0.73787 (13)0.0330 (4)
C40.0040 (2)0.3011 (2)0.77944 (14)0.0368 (4)
C50.0355 (3)0.4505 (2)0.82802 (17)0.0510 (5)
H50.14640.52650.83510.061*
C60.0972 (3)0.4891 (3)0.86675 (19)0.0635 (6)
H60.07400.59050.89910.076*
C70.2594 (3)0.3800 (3)0.85770 (19)0.0650 (6)
H70.34750.40640.88360.078*
C80.2934 (3)0.2302 (3)0.8102 (2)0.0712 (7)
H80.40470.15510.80430.085*
C90.1620 (3)0.1901 (3)0.7708 (2)0.0582 (5)
H90.18610.08840.73850.070*
C100.1974 (2)0.1815 (2)0.82832 (14)0.0370 (4)
C110.2842 (3)0.2747 (2)0.93080 (16)0.0503 (5)
H110.31190.37950.94340.060*
C120.3302 (3)0.2147 (3)1.01427 (19)0.0684 (6)
H120.38900.27901.08220.082*
C130.2896 (4)0.0616 (4)0.9973 (2)0.0843 (8)
H130.32120.02111.05330.101*
C140.2023 (4)0.0325 (3)0.8978 (3)0.0929 (9)
H140.17360.13730.88660.112*
C150.1555 (3)0.0270 (2)0.8124 (2)0.0637 (6)
H150.09610.03810.74500.076*
C160.7858 (7)0.4340 (8)0.5562 (4)0.0575 (12)0.749 (12)
H16A0.85540.41800.61180.069*0.749 (12)
H16B0.86020.48730.50320.069*0.749 (12)
C170.6525 (7)0.2805 (5)0.4932 (5)0.0575 (12)0.749 (12)
H170.58120.22750.54870.069*0.749 (12)
C180.7400 (14)0.1808 (15)0.4340 (10)0.099 (3)0.749 (12)
H18A0.65510.07910.40380.148*0.749 (12)
H18B0.81970.17590.48770.148*0.749 (12)
H18C0.79990.22510.37340.148*0.749 (12)
C16'0.722 (2)0.368 (2)0.5724 (13)0.056 (4)0.251 (12)
H16C0.83320.38100.60200.068*0.251 (12)
H16D0.63560.28920.60480.068*0.251 (12)
C17'0.7033 (17)0.3156 (18)0.4444 (14)0.060 (3)0.251 (12)
H17'0.79590.38570.40810.072*0.251 (12)
C18'0.683 (4)0.149 (5)0.410 (3)0.103 (8)0.251 (12)
H18D0.59010.08390.44650.154*0.251 (12)
H18E0.78670.14220.43220.154*0.251 (12)
H18F0.65820.11510.32890.154*0.251 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02461 (16)0.02656 (16)0.02889 (16)0.00303 (12)0.00163 (11)0.00520 (11)
N10.0362 (8)0.0296 (7)0.0283 (7)0.0070 (6)0.0060 (6)0.0005 (6)
N20.0296 (7)0.0271 (7)0.0285 (7)0.0002 (6)0.0031 (6)0.0033 (5)
N30.0354 (8)0.0493 (9)0.0422 (8)0.0079 (7)0.0019 (7)0.0143 (7)
N40.0407 (9)0.0342 (8)0.0462 (9)0.0099 (7)0.0075 (7)0.0059 (7)
O10.0454 (8)0.0378 (7)0.0282 (6)0.0079 (6)0.0059 (5)0.0010 (5)
O20.0453 (7)0.0366 (7)0.0329 (6)0.0059 (6)0.0031 (6)0.0030 (5)
C10.0311 (9)0.0292 (8)0.0301 (8)0.0024 (7)0.0034 (7)0.0046 (7)
C20.0304 (9)0.0290 (8)0.0304 (8)0.0039 (7)0.0031 (7)0.0048 (7)
C30.0313 (9)0.0295 (8)0.0272 (8)0.0025 (7)0.0038 (7)0.0032 (6)
C40.0355 (9)0.0441 (10)0.0297 (8)0.0134 (8)0.0061 (7)0.0119 (7)
C50.0467 (11)0.0520 (12)0.0472 (11)0.0180 (10)0.0040 (9)0.0008 (9)
C60.0677 (16)0.0705 (15)0.0572 (13)0.0382 (13)0.0098 (11)0.0017 (11)
C70.0620 (15)0.0929 (19)0.0575 (13)0.0471 (14)0.0196 (11)0.0201 (13)
C80.0395 (12)0.0841 (18)0.0908 (18)0.0206 (12)0.0208 (12)0.0308 (15)
C90.0409 (11)0.0533 (12)0.0777 (15)0.0136 (10)0.0168 (11)0.0209 (11)
C100.0328 (9)0.0395 (9)0.0354 (9)0.0107 (8)0.0108 (7)0.0102 (7)
C110.0544 (12)0.0543 (12)0.0382 (10)0.0192 (10)0.0011 (9)0.0078 (9)
C120.0703 (16)0.0855 (18)0.0460 (12)0.0272 (14)0.0034 (11)0.0173 (12)
C130.099 (2)0.096 (2)0.0688 (17)0.0404 (18)0.0025 (15)0.0412 (16)
C140.125 (3)0.0590 (16)0.100 (2)0.0353 (17)0.000 (2)0.0359 (16)
C150.0815 (17)0.0425 (12)0.0592 (13)0.0169 (11)0.0027 (12)0.0126 (10)
C160.041 (2)0.068 (3)0.067 (2)0.024 (2)0.0031 (18)0.021 (2)
C170.064 (3)0.054 (2)0.067 (3)0.036 (2)0.009 (2)0.0153 (19)
C180.106 (7)0.102 (6)0.111 (5)0.081 (6)0.013 (4)0.014 (4)
C16'0.053 (9)0.054 (8)0.071 (8)0.031 (7)0.006 (6)0.014 (7)
C17'0.051 (6)0.080 (8)0.064 (8)0.039 (6)0.019 (5)0.021 (6)
C18'0.085 (16)0.099 (18)0.14 (2)0.063 (15)0.022 (13)0.007 (15)
Geometric parameters (Å, º) top
Ni1—N3i2.0946 (15)C6—H60.9300
Ni1—N32.0946 (15)C7—C81.371 (4)
Ni1—N42.0950 (15)C7—H70.9300
Ni1—N4i2.0950 (15)C8—C91.394 (3)
Ni1—N2i2.1245 (13)C8—H80.9300
Ni1—N22.1245 (13)C9—H90.9300
N1—C11.343 (2)C10—C151.372 (3)
N1—C31.456 (2)C10—C111.389 (3)
N1—H10.8600C11—C121.380 (3)
N2—C21.349 (2)C11—H110.9300
N2—C11.379 (2)C12—C131.359 (4)
N3—C161.423 (5)C12—H120.9300
N3—C16'1.580 (13)C13—C141.366 (4)
N3—H3A0.9000C13—H130.9300
N3—H3B0.9000C14—C151.398 (3)
N3—H3'A0.9000C14—H140.9300
N3—H3'B0.9000C15—H150.9300
N4—C17'1.428 (11)C16—C171.517 (8)
N4—C171.510 (4)C16—H16A0.9700
N4—H4A0.9000C16—H16B0.9700
N4—H4B0.9000C17—C181.534 (11)
N4—H4'A0.9000C17—H170.9800
N4—H4'B0.9000C18—H18A0.9600
O1—C11.245 (2)C18—H18B0.9600
O2—C21.2292 (19)C18—H18C0.9600
C2—C31.557 (2)C16'—C17'1.52 (3)
C3—C101.532 (2)C16'—H16C0.9700
C3—C41.538 (2)C16'—H16D0.9700
C4—C51.377 (3)C17'—C18'1.54 (4)
C4—C91.383 (3)C17'—H17'0.9800
C5—C61.393 (3)C18'—H18D0.9600
C5—H50.9300C18'—H18E0.9600
C6—C71.354 (3)C18'—H18F0.9600
N3i—Ni1—N3180.000 (1)C10—C3—C4109.20 (13)
N3i—Ni1—N496.99 (6)N1—C3—C298.65 (12)
N3—Ni1—N483.01 (6)C10—C3—C2111.63 (14)
N3i—Ni1—N4i83.01 (6)C4—C3—C2112.68 (14)
N3—Ni1—N4i96.99 (6)C5—C4—C9118.46 (18)
N4—Ni1—N4i180.00 (8)C5—C4—C3123.02 (16)
N3i—Ni1—N2i90.86 (6)C9—C4—C3118.48 (17)
N3—Ni1—N2i89.14 (6)C4—C5—C6120.7 (2)
N4—Ni1—N2i90.56 (6)C4—C5—H5119.7
N4i—Ni1—N2i89.44 (6)C6—C5—H5119.7
N3i—Ni1—N289.14 (6)C7—C6—C5120.5 (2)
N3—Ni1—N290.86 (6)C7—C6—H6119.7
N4—Ni1—N289.44 (6)C5—C6—H6119.7
N4i—Ni1—N290.56 (6)C6—C7—C8119.7 (2)
N2i—Ni1—N2180.00 (7)C6—C7—H7120.1
C1—N1—C3111.57 (13)C8—C7—H7120.1
C1—N1—H1124.2C7—C8—C9120.3 (2)
C3—N1—H1124.2C7—C8—H8119.8
C2—N2—C1107.79 (13)C9—C8—H8119.8
C2—N2—Ni1126.79 (11)C4—C9—C8120.2 (2)
C1—N2—Ni1125.37 (10)C4—C9—H9119.9
C16—N3—C16'26.9 (6)C8—C9—H9119.9
C16—N3—Ni1108.5 (2)C15—C10—C11118.31 (18)
C16'—N3—Ni1103.2 (5)C15—C10—C3121.58 (17)
C16—N3—H3A110.0C11—C10—C3120.09 (16)
C16'—N3—H3A134.1C12—C11—C10121.2 (2)
Ni1—N3—H3A110.0C12—C11—H11119.4
C16—N3—H3B110.0C10—C11—H11119.4
C16'—N3—H3B88.1C13—C12—C11120.0 (2)
Ni1—N3—H3B110.0C13—C12—H12120.0
H3A—N3—H3B108.4C11—C12—H12120.0
C16—N3—H3'A84.6C12—C13—C14119.7 (2)
C16'—N3—H3'A110.8C12—C13—H13120.1
Ni1—N3—H3'A111.2C14—C13—H13120.1
H3A—N3—H3'A27.1C13—C14—C15120.8 (2)
H3B—N3—H3'A128.4C13—C14—H14119.6
C16—N3—H3'B128.8C15—C14—H14119.6
C16'—N3—H3'B111.3C10—C15—C14119.9 (2)
Ni1—N3—H3'B111.2C10—C15—H15120.0
H3A—N3—H3'B85.3C14—C15—H15120.0
H3B—N3—H3'B24.9N3—C16—C17109.4 (4)
H3'A—N3—H3'B109.1N3—C16—H16A109.8
C17'—N4—C1730.6 (6)C17—C16—H16A109.8
C17'—N4—Ni1113.6 (5)N3—C16—H16B109.8
C17—N4—Ni1106.75 (19)C17—C16—H16B109.8
C17'—N4—H4A128.2H16A—C16—H16B108.2
C17—N4—H4A110.4N4—C17—C16107.8 (4)
Ni1—N4—H4A110.4N4—C17—C18113.7 (5)
C17'—N4—H4B80.3C16—C17—C18110.2 (6)
C17—N4—H4B110.4N4—C17—H17108.3
Ni1—N4—H4B110.4C16—C17—H17108.3
H4A—N4—H4B108.6C18—C17—H17108.3
C17'—N4—H4'A108.7C17'—C16'—N3113.0 (12)
C17—N4—H4'A84.0C17'—C16'—H16C109.0
Ni1—N4—H4'A108.7N3—C16'—H16C109.0
H4A—N4—H4'A29.0C17'—C16'—H16D109.0
H4B—N4—H4'A131.5N3—C16'—H16D109.0
C17'—N4—H4'B109.2H16C—C16'—H16D107.8
C17—N4—H4'B136.1N4—C17'—C16'102.5 (12)
Ni1—N4—H4'B108.9N4—C17'—C18'105.2 (14)
H4A—N4—H4'B80.1C16'—C17'—C18'112 (2)
H4B—N4—H4'B31.9N4—C17'—H17'112.3
H4'A—N4—H4'B107.6C16'—C17'—H17'112.3
O1—C1—N1124.25 (15)C18'—C17'—H17'112.3
O1—C1—N2124.13 (14)C17'—C18'—H18D109.5
N1—C1—N2111.62 (13)C17'—C18'—H18E109.5
O2—C2—N2125.70 (15)H18D—C18'—H18E109.5
O2—C2—C3124.01 (14)C17'—C18'—H18F109.5
N2—C2—C3110.29 (13)H18D—C18'—H18F109.5
N1—C3—C10113.28 (14)H18E—C18'—H18F109.5
N1—C3—C4111.15 (14)
N3i—Ni1—N2—C2125.79 (15)O2—C2—C3—C465.1 (2)
N3—Ni1—N2—C254.21 (15)N2—C2—C3—C4114.64 (15)
N4—Ni1—N2—C2137.22 (15)N1—C3—C4—C5135.47 (17)
N4i—Ni1—N2—C242.78 (15)C10—C3—C4—C598.84 (19)
N2i—Ni1—N2—C24 (100)C2—C3—C4—C525.8 (2)
N3i—Ni1—N2—C151.22 (14)N1—C3—C4—C946.6 (2)
N3—Ni1—N2—C1128.78 (14)C10—C3—C4—C979.1 (2)
N4—Ni1—N2—C145.78 (14)C2—C3—C4—C9156.21 (17)
N4i—Ni1—N2—C1134.22 (14)C9—C4—C5—C60.5 (3)
N2i—Ni1—N2—C1179 (100)C3—C4—C5—C6178.45 (18)
N3i—Ni1—N3—C16122 (100)C4—C5—C6—C70.3 (3)
N4—Ni1—N3—C1615.4 (3)C5—C6—C7—C80.1 (4)
N4i—Ni1—N3—C16164.6 (3)C6—C7—C8—C90.4 (4)
N2i—Ni1—N3—C1675.2 (3)C5—C4—C9—C80.3 (3)
N2—Ni1—N3—C16104.8 (3)C3—C4—C9—C8178.32 (19)
N3i—Ni1—N3—C16'95 (100)C7—C8—C9—C40.2 (4)
N4—Ni1—N3—C16'12.0 (8)N1—C3—C10—C1515.7 (2)
N4i—Ni1—N3—C16'168.0 (8)C4—C3—C10—C15108.7 (2)
N2i—Ni1—N3—C16'102.7 (8)C2—C3—C10—C15126.00 (19)
N2—Ni1—N3—C16'77.3 (8)N1—C3—C10—C11166.25 (16)
N3i—Ni1—N4—C17'162.2 (9)C4—C3—C10—C1169.3 (2)
N3—Ni1—N4—C17'17.8 (9)C2—C3—C10—C1156.0 (2)
N4i—Ni1—N4—C17'110 (100)C15—C10—C11—C121.0 (3)
N2i—Ni1—N4—C17'71.3 (9)C3—C10—C11—C12179.14 (19)
N2—Ni1—N4—C17'108.7 (9)C10—C11—C12—C130.4 (4)
N3i—Ni1—N4—C17165.9 (3)C11—C12—C13—C140.4 (5)
N3—Ni1—N4—C1714.1 (3)C12—C13—C14—C150.7 (5)
N4i—Ni1—N4—C1778 (100)C11—C10—C15—C140.8 (4)
N2i—Ni1—N4—C17103.1 (3)C3—C10—C15—C14178.9 (2)
N2—Ni1—N4—C1776.9 (3)C13—C14—C15—C100.0 (5)
C3—N1—C1—O1177.93 (17)C16'—N3—C16—C1740.6 (13)
C3—N1—C1—N21.9 (2)Ni1—N3—C16—C1742.2 (6)
C2—N2—C1—O1179.86 (17)C17'—N4—C17—C1668.4 (11)
Ni1—N2—C1—O12.4 (3)Ni1—N4—C17—C1639.8 (6)
C2—N2—C1—N10.0 (2)C17'—N4—C17—C1854.1 (13)
Ni1—N2—C1—N1177.47 (11)Ni1—N4—C17—C18162.3 (7)
C1—N2—C2—O2178.50 (18)N3—C16—C17—N455.9 (7)
Ni1—N2—C2—O24.1 (3)N3—C16—C17—C18179.5 (6)
C1—N2—C2—C31.79 (19)C16—N3—C16'—C17'64.1 (18)
Ni1—N2—C2—C3175.64 (10)Ni1—N3—C16'—C17'40.7 (17)
C1—N1—C3—C10120.79 (16)C17—N4—C17'—C16'40.9 (13)
C1—N1—C3—C4115.83 (16)Ni1—N4—C17'—C16'42.2 (18)
C1—N1—C3—C22.67 (18)C17—N4—C17'—C18'76 (2)
O2—C2—C3—N1177.60 (17)Ni1—N4—C17'—C18'159.0 (19)
N2—C2—C3—N12.68 (18)N3—C16'—C17'—N455 (2)
O2—C2—C3—C1058.2 (2)N3—C16'—C17'—C18'167.3 (14)
N2—C2—C3—C10122.05 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O20.902.553.231 (2)133
N4—H4A···O10.902.262.983 (2)138

Experimental details

Crystal data
Chemical formula[Ni(C15H11N2O2)2(C3H10N2)2]
Mr709.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.581 (1), 9.731 (1), 12.036 (2)
α, β, γ (°)100.602 (2), 90.298 (1), 113.951 (2)
V3)899.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.47 × 0.45 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.769, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
4760, 3164, 2908
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.09
No. of reflections3164
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3'B···O20.902.553.231 (2)132.6
N4—H4A···O10.902.262.983 (2)137.8
 

Acknowledgements

We are grateful for financial support from the Key Project for Fundamental Research of the Educational Committee of Jiangsu Province (07 K J A15011) and the Natural Science Foundation of Huaihai Institute of Technology (KX07042).

References

First citationAkitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183–m186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821–827.  CrossRef CAS Web of Science Google Scholar
First citationHu, X.-L., Xu, X.-Y., Wang, D.-Q. & Xu, T.-T. (2006a). Acta Cryst. E62, m1922–m1923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X., Xu, X., Xu, T. & Wang, D. (2006b). Acta Cryst. E62, m2221–m2223.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMilne, P., Ho, M. & Weaver, D. F. (1999). J. Mol. Struct. (Theochem), 492, 19–28.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds