metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1544-m1545

[1,1′-Bis(di­phenyl­phosphino)ferrocene]carbon­yl[di­hydro­bis­(pyrazol-1-yl)borato]hydridoruthenium(II) acetone solvate

aDepartment of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, Republic of Korea, and bDepartment of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: shuh@hufs.ac.kr

(Received 8 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, [FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6O, the RuII ion is coordinated in a distorted octa­hedral environment involving a hydride ligand, a carbonyl ligand and two bidentate ligands. Of the two bidentate ligands, the bulky 1,1′-bis­(diphenyl­phosphino)ferrocene (dppf) ligand chelates with a larger bite angle of 101.90 (2)°, whereas the bite angle of the [H2Bpz2] ligand (pz = pyrazol­yl) is 85.67 (7)°. The latter ligand creates an RuN4B six-membered ring with a boat conformation, which puckers towards the site of the small hydride ligand. The hydride ligand is cis with respect to the carbonyl ligand and trans to one of the P atoms of the dppf ligand. In the crystal structure, there are weak inter­molecular C—H⋯O hydrogen bonds between complex mol­ecules and acetone solvent mol­ecules.

Related literature

For background information on RuII complexes, see: Buriez et al. (1999[Buriez, B., Burns, I. D., Hill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1999). Organometallics, 18, 1504-1516.]); Han et al. (1996[Han, S.-H., Sung, K.-M., Huh, S., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 3811-3820.]); Hill et al. (1998[Hill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1998). Organometallics, 17, 4249-4258.]); Huh et al. (1996[Huh, S., Sung, K.-M., Cho, Y., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 1473-1479.]); Na et al. (1996[Na, K.-I., Huh, S., Sung, K.-M. & Jun, M.-J. (1996). Polyhedron, 15, 1841-1846.]); Sánchez-Delgado et al. (1986[Sánchez-Delgado, R. A., Valencia, N., Márquez-Silva, R.-L., Andriollo, A. & Medina, M. (1986). Inorg. Chem. 25, 1106-1111.]). For related structures, see: Huh et al. (1999[Huh, S., Kim, Y., Park, S., Park, T.-J. & Jun, M.-J. (1999). Acta Cryst. C55, 850-852.], 2000[Huh, S., Park, Y. J., Lough, A. J. & Jun, M.-J. (2000). Acta Cryst. C56, 416-417.]).

[Scheme 1]

Experimental

Crystal data
  • [FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6O

  • Mr = 889.49

  • Monoclinic, P 21 /c

  • a = 9.0730 (2) Å

  • b = 29.9785 (5) Å

  • c = 14.7960 (3) Å

  • β = 94.617 (1)°

  • V = 4011.38 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100 (1) K

  • 0.20 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.847, Tmax = 0.904

  • 41892 measured reflections

  • 11681 independent reflections

  • 7603 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.079

  • S = 0.94

  • 11681 reflections

  • 508 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—H1 1.60 (2)
Ru1—C1 1.832 (2)
Ru1—N1 2.1469 (17)
Ru1—N3 2.1514 (18)
Ru1—P1 2.3025 (6)
Ru1—P2 2.4813 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1S 1.00 2.45 3.426 (3) 166
C32—H32A⋯O1Si 0.95 2.45 3.251 (3) 142
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydridocarbonyl RuII polyphophine complexes are excellent catalyst precursors for the homogeneous hydrogenation of carbonyl groups such as aldehydes and ketones under molecular hydrogen atomosphere (Sánchez-Delgado et al., 1986; Huh et al., 1996; Na et al., 1996). Poly(azolyl)borate RuII complexes are also versatile organometallic catalyst precursors for various organic reactions (Buriez et al., 1999). Most of the poly(azolyl)borate complexes possess potentially tridentate hydrotris(pyrazol-1-yl)borate derivatives (Buriez et al., 1999). However, Hill et al. (1998) reported RuII complexes with a bidentate dihydrobis(pyrazol-1-yl)borate ligand, [H2Bpz2]- (pz = pyrazolyl), and their reactivity with various unsaturated organic groups. We have also structurally characterized two hydridocarbonyl RuII complexes bearing a bidentate dihydrobis(pyrazol-1-yl)borate ligand (Huh et al., 1999; 2000). These compounds are potentially efficient catalyst precursors for the homogeneous hydrogenation of aldehydes and ketones.

As the dihydrobis(pyrazol-1-yl)borate ligand usually occupies no more than two coordination sites of a transition metal ion, it may be advantageous to introduce additional chelate ligands to further control the electronic and steric factors of the RuII complex (Huh et al., 1996). In this regard, we successfully prepared and characterized a new RuII compound with two different bidentate ligands. A ligand displacement reaction of RuH(PPh3)2(η2-H2Bpz2)(CO) by 1,1'-bis(diphenylphosphino)ferrocene (dppf) yielded the title compound RuH(CO)(dppf)(η2-H2Bpz2).CH3COCH3, (I), which contains two different bidentate ligands, a neutral dppf ligand with two P donor atoms and an anionic [H2Bpz2]- ligand with two N donor atoms. The two mutually trans-positioned PPh3 ligands of the starting RuII complex were successfully replaced by the dppf ligand.

The dppf ligand coordinates to the RuII ion in the normal bidentate chelation mode as shown in Figure 1. The dppf ligand is bulkier than the [H2Bpz2]- ligand and hence the bite angle for the dppf ligand, P1—Ru1—P2, is 101.90 (2)°. This value is not significantly different from that in the known structure of [RuH(dppf)(NCCH3)(PPh3)(CO)]+, 102.15 (9)° (Han et al., 1996). The N1—Ru1—N3 bite angle is much smaller with a value of 85.67 (7)° A six-membered ring consisting of atoms of Ru1/N1—N4/B1 is in a boat conformation which is puckered towards the hydride ligand.

The longer Ru1—P2 bond (compared to Ru1—P1) may be attributed to the stronger trans effect of the hydride ligand than nitrogen donor atom of [H2Bpz2]-. The overall coordination environment of RuII ion is a distorted octahedral geometry. The two cyclopentadienyl rings of the dppf ligand show a staggered geometry.

Related literature top

For background information on RuII complexes, see: Buriez et al. (1999); Han et al. (1996); Hill et al. (1998); Huh et al. (1996); Na et al. (1996); Sánchez-Delgado et al. (1986). For related structures, see: Huh et al. (1999, 2000).

Experimental top

A reaction mixture of RuH(PPh3)2(η2-H2Bpz2)(CO) (207 mg, 0.258 mmol; Hill et al. 1998) and dppf (213 mg, 0.516 mmol) in 40 ml CH2Cl2 was heated under reflux in a nitrogen atmosphere for 22 h. The resulting solution was evaporated to dryness after filtration. The crude solids were dissolved in a minimum amount of acetone and stored at 258 K. X-ray quality yellow block crystals were obtained. The crystals were collected, washed with hexane and air-dried. Anal. Calcd for C41H37BN4FeOP2Ru.C3H6O: C, 59.41; H, 4.87; N, 6.30. Found: C, 59.32; H, 4.77; N, 6.23. IR (KBr): ν(BH2) 2408, 2365, 2342, 2279, ν(CO) 1924 cm-1. 1H NMR (CDCl3, 298 K, TMS, Bruker AMX 500, 500 MHz): δ -6.28 (dd, 1H, 2J = 127.9, 26.4 Hz) p.p.m..

Refinement top

H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.95 – 1.00 Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The positional parameters of the H atoms bonded to B1 were refined with Uiso(H) = 1.2Ueq(B), while the hydride H atom (H1) was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% ellipsoids for non-hydrogen atoms. The solvent acetone molecule is not shown and H atoms bonded to C atoms have been omitted.
[1,1'-Bis(diphenylphosphino)ferrocene]carbonyl[dihydrobis(pyrazol-1- yl)borato]hydridoruthenium(II) acetone solvate top
Crystal data top
[FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6OF(000) = 1824
Mr = 889.49Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 41892 reflections
a = 9.0730 (2) Åθ = 2.6–30.1°
b = 29.9785 (5) ŵ = 0.86 mm1
c = 14.7960 (3) ÅT = 100 K
β = 94.617 (1)°Plate, yellow
V = 4011.38 (14) Å30.20 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
11681 independent reflections
Radiation source: fine-focus sealed tube7603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9 pixels mm-1θmax = 30.1°, θmin = 2.6°
ϕ scans and ω scans with κ offsetsh = 1212
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 4242
Tmin = 0.847, Tmax = 0.904l = 2020
41892 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
11681 reflections(Δ/σ)max = 0.001
508 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6OV = 4011.38 (14) Å3
Mr = 889.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0730 (2) ŵ = 0.86 mm1
b = 29.9785 (5) ÅT = 100 K
c = 14.7960 (3) Å0.20 × 0.20 × 0.12 mm
β = 94.617 (1)°
Data collection top
Nonius KappaCCD
diffractometer
11681 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
7603 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.904Rint = 0.064
41892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.60 e Å3
11681 reflectionsΔρmin = 0.50 e Å3
508 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.595588 (19)0.361280 (6)0.185146 (12)0.01354 (5)
H10.647 (2)0.3263 (6)0.1126 (13)0.019 (6)*
Fe10.27014 (3)0.468086 (10)0.17021 (2)0.01479 (8)
P10.41814 (6)0.377120 (18)0.06951 (4)0.01403 (12)
P20.51433 (7)0.408011 (18)0.31033 (4)0.01519 (13)
O10.80746 (18)0.42485 (5)0.10937 (10)0.0230 (4)
N10.78142 (19)0.33846 (6)0.27188 (12)0.0157 (4)
N20.8112 (2)0.29422 (6)0.28533 (12)0.0178 (4)
N30.4803 (2)0.30479 (6)0.23495 (12)0.0156 (4)
N40.5526 (2)0.26580 (6)0.25653 (12)0.0168 (4)
C10.7193 (2)0.40206 (7)0.13852 (15)0.0162 (5)
C20.3400 (2)0.43298 (7)0.06501 (14)0.0149 (5)
C30.1942 (3)0.45016 (7)0.04071 (15)0.0189 (5)
H3A0.10400.43190.02360.023*
C40.1991 (3)0.49724 (7)0.04804 (15)0.0206 (5)
H4A0.11270.51780.03750.025*
C50.3462 (3)0.51024 (7)0.07443 (15)0.0184 (5)
H5A0.38180.54150.08520.022*
C60.4337 (2)0.47123 (7)0.08458 (14)0.0160 (5)
H6A0.54220.47030.10280.019*
C70.3510 (2)0.44297 (7)0.29240 (14)0.0159 (5)
C80.2046 (2)0.42628 (7)0.26797 (14)0.0166 (5)
H8A0.17700.39420.25920.020*
C90.1059 (3)0.46316 (7)0.25763 (15)0.0198 (5)
H9A0.00260.46140.23980.024*
C100.1886 (3)0.50291 (7)0.27475 (15)0.0193 (5)
H10A0.14830.53400.27130.023*
C110.3385 (3)0.49088 (7)0.29740 (14)0.0180 (5)
H11A0.42190.51210.31240.022*
C120.2620 (2)0.33857 (7)0.05801 (14)0.0159 (5)
C130.1236 (2)0.34714 (7)0.08908 (15)0.0184 (5)
H13A0.10390.37570.11330.022*
C140.0141 (3)0.31475 (7)0.08521 (15)0.0209 (5)
H14A0.07960.32120.10640.025*
C150.0417 (3)0.27301 (8)0.05045 (16)0.0236 (6)
H15A0.03330.25080.04730.028*
C160.1784 (3)0.26361 (7)0.02030 (16)0.0224 (5)
H16A0.19740.23480.00300.027*
C170.2882 (3)0.29595 (7)0.02387 (15)0.0194 (5)
H17A0.38190.28910.00300.023*
C180.4825 (2)0.37586 (7)0.04626 (14)0.0153 (5)
C190.6268 (3)0.36541 (7)0.06363 (15)0.0194 (5)
H19A0.69410.35520.01560.023*
C200.6739 (3)0.36966 (7)0.15022 (16)0.0235 (6)
H20A0.77310.36260.16090.028*
C210.5763 (3)0.38415 (7)0.22115 (16)0.0253 (6)
H21A0.60870.38730.28030.030*
C220.4321 (3)0.39395 (8)0.20531 (15)0.0247 (6)
H22A0.36470.40340.25400.030*
C230.3849 (3)0.39010 (7)0.11906 (15)0.0215 (5)
H23A0.28540.39720.10900.026*
C240.4732 (2)0.37769 (7)0.41384 (14)0.0168 (5)
C250.3670 (3)0.39273 (8)0.46939 (15)0.0220 (5)
H25A0.31220.41900.45340.026*
C260.3400 (3)0.36973 (8)0.54809 (16)0.0272 (6)
H26A0.26780.38060.58560.033*
C270.4174 (3)0.33129 (8)0.57210 (16)0.0263 (6)
H27A0.39820.31550.62560.032*
C280.5235 (3)0.31590 (8)0.51712 (16)0.0242 (6)
H28A0.57720.28950.53300.029*
C290.5515 (3)0.33896 (7)0.43905 (15)0.0197 (5)
H29A0.62500.32830.40220.024*
C300.6473 (2)0.45032 (7)0.35541 (15)0.0169 (5)
C310.7036 (2)0.48054 (7)0.29513 (16)0.0190 (5)
H31A0.67600.47770.23210.023*
C320.7987 (3)0.51464 (7)0.32510 (17)0.0220 (5)
H32A0.83430.53520.28310.026*
C330.8414 (3)0.51844 (8)0.41672 (17)0.0267 (6)
H33A0.90730.54150.43770.032*
C340.7880 (3)0.48861 (8)0.47795 (17)0.0300 (6)
H34A0.81780.49120.54080.036*
C350.6910 (3)0.45492 (8)0.44738 (16)0.0239 (5)
H35A0.65400.43480.48970.029*
C360.9347 (3)0.28986 (8)0.34064 (15)0.0210 (5)
H36A0.97790.26240.36080.025*
C370.9894 (2)0.33193 (8)0.36373 (15)0.0220 (5)
H37A1.07570.33910.40160.026*
C380.8894 (2)0.36109 (7)0.31905 (15)0.0182 (5)
H38A0.89660.39270.32150.022*
C390.4607 (3)0.23805 (7)0.29611 (15)0.0203 (5)
H39A0.48500.20890.31750.024*
C400.3255 (3)0.25860 (7)0.30071 (15)0.0198 (5)
H40A0.23960.24700.32490.024*
C410.3438 (2)0.30025 (7)0.26178 (14)0.0175 (5)
H41A0.26920.32250.25510.021*
B10.7149 (3)0.25689 (9)0.2369 (2)0.0198 (6)
H1B0.751 (2)0.2240 (7)0.2692 (15)0.024*
H2B0.729 (2)0.2576 (7)0.1595 (15)0.024*
O1S0.0065 (2)0.60075 (6)0.27422 (15)0.0531 (6)
C1S0.0106 (3)0.63712 (8)0.30926 (19)0.0302 (6)
C2S0.1145 (4)0.64454 (11)0.3906 (2)0.0562 (9)
H2SA0.16040.61610.40990.084*
H2SB0.06020.65660.43980.084*
H2SC0.19130.66570.37590.084*
C3S0.0704 (3)0.67699 (8)0.2707 (2)0.0395 (7)
H3SA0.12370.66910.21270.059*
H3SB0.00040.70090.26110.059*
H3SC0.14100.68720.31300.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01350 (9)0.01260 (9)0.01445 (9)0.00019 (7)0.00074 (7)0.00110 (8)
Fe10.01595 (17)0.01349 (16)0.01497 (17)0.00123 (13)0.00153 (13)0.00056 (13)
P10.0147 (3)0.0129 (3)0.0144 (3)0.0005 (2)0.0006 (2)0.0003 (2)
P20.0161 (3)0.0150 (3)0.0145 (3)0.0005 (2)0.0008 (2)0.0004 (2)
O10.0221 (9)0.0219 (9)0.0253 (9)0.0046 (7)0.0030 (7)0.0032 (7)
N10.0143 (10)0.0148 (9)0.0181 (10)0.0003 (8)0.0024 (8)0.0014 (8)
N20.0166 (10)0.0162 (10)0.0208 (10)0.0021 (8)0.0023 (8)0.0034 (8)
N30.0165 (10)0.0153 (9)0.0148 (10)0.0001 (8)0.0001 (8)0.0017 (8)
N40.0196 (10)0.0123 (9)0.0185 (10)0.0019 (8)0.0021 (8)0.0010 (8)
C10.0171 (12)0.0170 (12)0.0142 (11)0.0020 (9)0.0015 (9)0.0004 (9)
C20.0164 (12)0.0149 (11)0.0133 (11)0.0010 (9)0.0002 (9)0.0009 (9)
C30.0202 (13)0.0182 (12)0.0176 (12)0.0004 (10)0.0030 (10)0.0005 (10)
C40.0262 (14)0.0196 (12)0.0161 (12)0.0071 (10)0.0011 (10)0.0039 (10)
C50.0242 (13)0.0136 (11)0.0175 (12)0.0006 (9)0.0024 (10)0.0016 (9)
C60.0179 (12)0.0187 (12)0.0119 (11)0.0023 (9)0.0038 (9)0.0009 (9)
C70.0181 (12)0.0156 (11)0.0144 (12)0.0018 (9)0.0030 (9)0.0024 (9)
C80.0197 (12)0.0143 (11)0.0162 (12)0.0011 (9)0.0031 (9)0.0008 (9)
C90.0156 (12)0.0237 (13)0.0207 (13)0.0020 (10)0.0059 (10)0.0015 (10)
C100.0194 (13)0.0184 (12)0.0206 (13)0.0049 (10)0.0051 (10)0.0003 (10)
C110.0231 (13)0.0159 (12)0.0149 (12)0.0000 (10)0.0012 (10)0.0014 (9)
C120.0171 (12)0.0175 (12)0.0127 (11)0.0003 (9)0.0010 (9)0.0008 (9)
C130.0195 (12)0.0175 (11)0.0182 (12)0.0002 (9)0.0021 (10)0.0011 (10)
C140.0171 (12)0.0243 (13)0.0216 (13)0.0034 (10)0.0031 (10)0.0016 (10)
C150.0238 (14)0.0228 (13)0.0236 (14)0.0079 (10)0.0016 (11)0.0015 (11)
C160.0282 (14)0.0153 (12)0.0236 (13)0.0019 (10)0.0020 (11)0.0028 (10)
C170.0213 (13)0.0206 (12)0.0165 (12)0.0030 (10)0.0026 (10)0.0004 (10)
C180.0220 (13)0.0103 (10)0.0140 (11)0.0028 (9)0.0040 (9)0.0008 (9)
C190.0233 (12)0.0147 (11)0.0200 (12)0.0028 (10)0.0010 (10)0.0015 (10)
C200.0273 (14)0.0205 (13)0.0239 (13)0.0027 (10)0.0088 (11)0.0031 (10)
C210.0397 (16)0.0224 (13)0.0151 (12)0.0035 (11)0.0101 (11)0.0035 (10)
C220.0360 (16)0.0234 (13)0.0146 (12)0.0030 (11)0.0001 (11)0.0002 (10)
C230.0197 (13)0.0231 (13)0.0215 (13)0.0014 (10)0.0006 (10)0.0020 (10)
C240.0196 (12)0.0181 (11)0.0126 (11)0.0022 (9)0.0009 (9)0.0022 (9)
C250.0237 (13)0.0252 (13)0.0173 (12)0.0009 (10)0.0022 (10)0.0025 (10)
C260.0280 (14)0.0359 (15)0.0184 (13)0.0005 (12)0.0067 (11)0.0008 (11)
C270.0306 (15)0.0320 (14)0.0165 (12)0.0096 (12)0.0023 (11)0.0043 (11)
C280.0309 (15)0.0191 (12)0.0218 (13)0.0041 (11)0.0026 (11)0.0048 (11)
C290.0205 (13)0.0203 (12)0.0182 (12)0.0014 (10)0.0019 (10)0.0016 (10)
C300.0146 (12)0.0176 (12)0.0185 (12)0.0031 (9)0.0006 (9)0.0046 (10)
C310.0195 (13)0.0180 (12)0.0192 (12)0.0011 (10)0.0003 (10)0.0022 (10)
C320.0183 (12)0.0157 (12)0.0323 (14)0.0006 (10)0.0047 (11)0.0011 (11)
C330.0210 (13)0.0243 (13)0.0345 (15)0.0031 (11)0.0002 (11)0.0122 (12)
C340.0287 (15)0.0396 (15)0.0208 (13)0.0026 (12)0.0032 (11)0.0094 (12)
C350.0258 (14)0.0264 (13)0.0196 (13)0.0001 (11)0.0024 (11)0.0023 (11)
C360.0178 (12)0.0237 (13)0.0213 (13)0.0058 (10)0.0001 (10)0.0063 (10)
C370.0155 (12)0.0305 (14)0.0192 (12)0.0011 (10)0.0034 (10)0.0007 (11)
C380.0178 (12)0.0172 (11)0.0197 (12)0.0010 (10)0.0027 (9)0.0006 (10)
C390.0233 (13)0.0142 (11)0.0232 (13)0.0028 (10)0.0007 (10)0.0015 (10)
C400.0193 (13)0.0210 (12)0.0191 (12)0.0044 (10)0.0026 (10)0.0004 (10)
C410.0166 (12)0.0177 (12)0.0179 (12)0.0003 (9)0.0002 (9)0.0008 (10)
B10.0185 (14)0.0138 (13)0.0273 (16)0.0021 (11)0.0036 (12)0.0004 (12)
O1S0.0455 (14)0.0234 (11)0.0910 (18)0.0002 (9)0.0086 (12)0.0025 (11)
C1S0.0219 (13)0.0239 (14)0.0468 (17)0.0003 (11)0.0154 (12)0.0070 (13)
C2S0.058 (2)0.063 (2)0.046 (2)0.0098 (18)0.0029 (17)0.0101 (17)
C3S0.0322 (17)0.0273 (15)0.059 (2)0.0012 (12)0.0009 (15)0.0055 (14)
Geometric parameters (Å, º) top
Ru1—H11.60 (2)C16—C171.388 (3)
Ru1—C11.832 (2)C16—H16A0.9500
Ru1—N12.1469 (17)C17—H17A0.9500
Ru1—N32.1514 (18)C18—C191.390 (3)
Ru1—P12.3025 (6)C18—C231.405 (3)
Ru1—P22.4813 (6)C19—C201.389 (3)
Fe1—C22.023 (2)C19—H19A0.9500
Fe1—C62.030 (2)C20—C211.387 (3)
Fe1—C82.038 (2)C20—H20A0.9500
Fe1—C72.040 (2)C21—C221.380 (3)
Fe1—C112.051 (2)C21—H21A0.9500
Fe1—C102.053 (2)C22—C231.383 (3)
Fe1—C32.055 (2)C22—H22A0.9500
Fe1—C92.055 (2)C23—H23A0.9500
Fe1—C52.059 (2)C24—C251.391 (3)
Fe1—C42.064 (2)C24—C291.396 (3)
P1—C21.818 (2)C25—C261.392 (3)
P1—C121.825 (2)C25—H25A0.9500
P1—C181.854 (2)C26—C271.381 (3)
P2—C71.817 (2)C26—H26A0.9500
P2—C301.838 (2)C27—C281.389 (3)
P2—C241.845 (2)C27—H27A0.9500
O1—C11.161 (3)C28—C291.387 (3)
N1—C381.341 (3)C28—H28A0.9500
N1—N21.365 (2)C29—H29A0.9500
N2—C361.340 (3)C30—C351.393 (3)
N2—B11.558 (3)C30—C311.396 (3)
N3—C411.338 (3)C31—C321.388 (3)
N3—N41.365 (2)C31—H31A0.9500
N4—C391.345 (3)C32—C331.384 (3)
N4—B11.547 (3)C32—H32A0.9500
C2—C31.438 (3)C33—C341.388 (3)
C2—C61.443 (3)C33—H33A0.9500
C3—C41.416 (3)C34—C351.391 (3)
C3—H3A1.0000C34—H34A0.9500
C4—C51.415 (3)C35—H35A0.9500
C4—H4A1.0000C36—C371.388 (3)
C5—C61.415 (3)C36—H36A0.9500
C5—H5A1.0000C37—C381.388 (3)
C6—H6A1.0000C37—H37A0.9500
C7—C81.438 (3)C38—H38A0.9500
C7—C111.443 (3)C39—C401.379 (3)
C8—C91.423 (3)C39—H39A0.9500
C8—H8A1.0000C40—C411.391 (3)
C9—C101.420 (3)C40—H40A0.9500
C9—H9A1.0000C41—H41A0.9500
C10—C111.421 (3)B1—H1B1.13 (2)
C10—H10A1.0000B1—H2B1.16 (2)
C11—H11A1.0000O1S—C1S1.212 (3)
C12—C131.396 (3)C1S—C2S1.485 (4)
C12—C171.401 (3)C1S—C3S1.492 (3)
C13—C141.386 (3)C2S—H2SA0.9800
C13—H13A0.9500C2S—H2SB0.9800
C14—C151.383 (3)C2S—H2SC0.9800
C14—H14A0.9500C3S—H3SA0.9800
C15—C161.380 (3)C3S—H3SB0.9800
C15—H15A0.9500C3S—H3SC0.9800
H1—Ru1—C187.9 (7)C10—C9—Fe169.69 (13)
H1—Ru1—N186.2 (7)C8—C9—Fe169.01 (13)
C1—Ru1—N187.83 (8)C10—C9—H9A125.8
H1—Ru1—N383.7 (7)C8—C9—H9A125.8
C1—Ru1—N3169.69 (8)Fe1—C9—H9A125.8
N1—Ru1—N385.67 (7)C9—C10—C11108.11 (19)
H1—Ru1—P182.0 (7)C9—C10—Fe169.88 (13)
C1—Ru1—P189.75 (7)C11—C10—Fe169.66 (12)
N1—Ru1—P1168.07 (5)C9—C10—H10A125.9
N3—Ru1—P194.98 (5)C11—C10—H10A125.9
H1—Ru1—P2173.2 (7)Fe1—C10—H10A125.9
C1—Ru1—P297.60 (7)C10—C11—C7108.5 (2)
N1—Ru1—P290.00 (5)C10—C11—Fe169.82 (13)
N3—Ru1—P290.39 (5)C7—C11—Fe168.93 (12)
P1—Ru1—P2101.90 (2)C10—C11—H11A125.7
C2—Fe1—C641.71 (8)C7—C11—H11A125.7
C2—Fe1—C8110.71 (9)Fe1—C11—H11A125.7
C6—Fe1—C8137.83 (9)C13—C12—C17118.0 (2)
C2—Fe1—C7112.17 (8)C13—C12—P1124.40 (16)
C6—Fe1—C7109.97 (9)C17—C12—P1117.27 (17)
C8—Fe1—C741.29 (8)C14—C13—C12121.2 (2)
C2—Fe1—C11142.11 (9)C14—C13—H13A119.4
C6—Fe1—C11112.02 (9)C12—C13—H13A119.4
C8—Fe1—C1168.75 (9)C15—C14—C13119.9 (2)
C7—Fe1—C1141.32 (8)C15—C14—H14A120.0
C2—Fe1—C10177.15 (9)C13—C14—H14A120.0
C6—Fe1—C10140.60 (9)C16—C15—C14119.9 (2)
C8—Fe1—C1068.57 (9)C16—C15—H15A120.0
C7—Fe1—C1069.25 (9)C14—C15—H15A120.0
C11—Fe1—C1040.52 (9)C15—C16—C17120.4 (2)
C2—Fe1—C341.30 (8)C15—C16—H16A119.8
C6—Fe1—C368.74 (9)C17—C16—H16A119.8
C8—Fe1—C3113.94 (9)C16—C17—C12120.6 (2)
C7—Fe1—C3143.10 (9)C16—C17—H17A119.7
C11—Fe1—C3175.43 (8)C12—C17—H17A119.7
C10—Fe1—C3136.17 (9)C19—C18—C23118.1 (2)
C2—Fe1—C9137.30 (9)C19—C18—P1123.14 (17)
C6—Fe1—C9178.48 (9)C23—C18—P1118.44 (17)
C8—Fe1—C940.69 (8)C20—C19—C18121.0 (2)
C7—Fe1—C969.08 (9)C20—C19—H19A119.5
C11—Fe1—C968.13 (9)C18—C19—H19A119.5
C10—Fe1—C940.43 (9)C21—C20—C19120.1 (2)
C3—Fe1—C9111.24 (9)C21—C20—H20A119.9
C2—Fe1—C569.29 (9)C19—C20—H20A119.9
C6—Fe1—C540.48 (8)C22—C21—C20119.6 (2)
C8—Fe1—C5177.30 (9)C22—C21—H21A120.2
C7—Fe1—C5136.06 (9)C20—C21—H21A120.2
C11—Fe1—C5109.49 (9)C21—C22—C23120.5 (2)
C10—Fe1—C5111.57 (9)C21—C22—H22A119.8
C3—Fe1—C567.95 (9)C23—C22—H22A119.8
C9—Fe1—C5141.02 (9)C22—C23—C18120.6 (2)
C2—Fe1—C468.99 (9)C22—C23—H23A119.7
C6—Fe1—C468.04 (9)C18—C23—H23A119.7
C8—Fe1—C4142.53 (9)C25—C24—C29118.3 (2)
C7—Fe1—C4175.85 (9)C25—C24—P2121.78 (17)
C11—Fe1—C4135.46 (9)C29—C24—P2119.95 (17)
C10—Fe1—C4109.79 (9)C24—C25—C26120.7 (2)
C3—Fe1—C440.22 (8)C24—C25—H25A119.7
C9—Fe1—C4112.99 (9)C26—C25—H25A119.7
C5—Fe1—C440.14 (9)C27—C26—C25120.6 (2)
C2—P1—C12106.41 (10)C27—C26—H26A119.7
C2—P1—C1897.80 (10)C25—C26—H26A119.7
C12—P1—C18101.58 (10)C26—C27—C28119.2 (2)
C2—P1—Ru1117.68 (7)C26—C27—H27A120.4
C12—P1—Ru1115.45 (7)C28—C27—H27A120.4
C18—P1—Ru1115.41 (8)C29—C28—C27120.3 (2)
C7—P2—C3099.13 (10)C29—C28—H28A119.9
C7—P2—C24100.87 (10)C27—C28—H28A119.9
C30—P2—C24102.09 (10)C28—C29—C24120.9 (2)
C7—P2—Ru1120.30 (7)C28—C29—H29A119.5
C30—P2—Ru1115.76 (8)C24—C29—H29A119.5
C24—P2—Ru1115.69 (7)C35—C30—C31118.0 (2)
C38—N1—N2106.74 (17)C35—C30—P2123.33 (18)
C38—N1—Ru1130.98 (15)C31—C30—P2118.62 (17)
N2—N1—Ru1122.24 (13)C32—C31—C30121.6 (2)
C36—N2—N1109.25 (18)C32—C31—H31A119.2
C36—N2—B1128.41 (19)C30—C31—H31A119.2
N1—N2—B1122.27 (18)C33—C32—C31119.4 (2)
C41—N3—N4106.40 (17)C33—C32—H32A120.3
C41—N3—Ru1131.99 (14)C31—C32—H32A120.3
N4—N3—Ru1121.08 (14)C32—C33—C34120.1 (2)
C39—N4—N3109.17 (18)C32—C33—H33A119.9
C39—N4—B1127.43 (19)C34—C33—H33A119.9
N3—N4—B1123.40 (18)C33—C34—C35120.0 (2)
O1—C1—Ru1173.74 (19)C33—C34—H34A120.0
C3—C2—C6106.32 (18)C35—C34—H34A120.0
C3—C2—P1133.40 (17)C34—C35—C30120.8 (2)
C6—C2—P1120.21 (16)C34—C35—H35A119.6
C3—C2—Fe170.55 (12)C30—C35—H35A119.6
C6—C2—Fe169.40 (12)N2—C36—C37109.1 (2)
P1—C2—Fe1126.63 (11)N2—C36—H36A125.5
C4—C3—C2108.4 (2)C37—C36—H36A125.5
C4—C3—Fe170.23 (12)C36—C37—C38104.4 (2)
C2—C3—Fe168.15 (12)C36—C37—H37A127.8
C4—C3—H3A125.8C38—C37—H37A127.8
C2—C3—H3A125.8N1—C38—C37110.6 (2)
Fe1—C3—H3A125.8N1—C38—H38A124.7
C5—C4—C3108.6 (2)C37—C38—H38A124.7
C5—C4—Fe169.74 (13)N4—C39—C40109.3 (2)
C3—C4—Fe169.56 (12)N4—C39—H39A125.4
C5—C4—H4A125.7C40—C39—H39A125.4
C3—C4—H4A125.7C39—C40—C41104.2 (2)
Fe1—C4—H4A125.7C39—C40—H40A127.9
C6—C5—C4108.09 (19)C41—C40—H40A127.9
C6—C5—Fe168.66 (12)N3—C41—C40111.0 (2)
C4—C5—Fe170.11 (13)N3—C41—H41A124.5
C6—C5—H5A125.9C40—C41—H41A124.5
C4—C5—H5A125.9H1B—B1—H2B112.4 (15)
Fe1—C5—H5A125.9H1B—B1—N4108.6 (11)
C5—C6—C2108.60 (19)H2B—B1—N4111.2 (11)
C5—C6—Fe170.87 (13)H1B—B1—N2107.4 (11)
C2—C6—Fe168.88 (12)H2B—B1—N2109.8 (11)
C5—C6—H6A125.7N4—B1—N2107.27 (18)
C2—C6—H6A125.7O1S—C1S—C2S122.2 (3)
Fe1—C6—H6A125.7O1S—C1S—C3S121.0 (3)
C8—C7—C11106.53 (19)C2S—C1S—C3S116.8 (2)
C8—C7—P2124.19 (16)C1S—C2S—H2SA109.5
C11—C7—P2129.28 (17)C1S—C2S—H2SB109.5
C8—C7—Fe169.30 (12)H2SA—C2S—H2SB109.5
C11—C7—Fe169.75 (12)C1S—C2S—H2SC109.5
P2—C7—Fe1124.98 (12)H2SA—C2S—H2SC109.5
C9—C8—C7108.49 (19)H2SB—C2S—H2SC109.5
C9—C8—Fe170.30 (12)C1S—C3S—H3SA109.5
C7—C8—Fe169.41 (12)C1S—C3S—H3SB109.5
C9—C8—H8A125.8H3SA—C3S—H3SB109.5
C7—C8—H8A125.8C1S—C3S—H3SC109.5
Fe1—C8—H8A125.8H3SA—C3S—H3SC109.5
C10—C9—C8108.3 (2)H3SB—C3S—H3SC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1S1.002.453.426 (3)166
C32—H32A···O1Si0.952.453.251 (3)142
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6O
Mr889.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0730 (2), 29.9785 (5), 14.7960 (3)
β (°) 94.617 (1)
V3)4011.38 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.847, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
41892, 11681, 7603
Rint0.064
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.079, 0.94
No. of reflections11681
No. of parameters508
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.50

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Ru1—H11.60 (2)Ru1—N32.1514 (18)
Ru1—C11.832 (2)Ru1—P12.3025 (6)
Ru1—N12.1469 (17)Ru1—P22.4813 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1S1.002.453.426 (3)166
C32—H32A···O1Si0.952.453.251 (3)142
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by Hankuk University of Foreign Studies Research Fund of 2008.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBuriez, B., Burns, I. D., Hill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1999). Organometallics, 18, 1504–1516.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, S.-H., Sung, K.-M., Huh, S., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 3811–3820.  CSD CrossRef CAS Web of Science Google Scholar
First citationHill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1998). Organometallics, 17, 4249–4258.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuh, S., Kim, Y., Park, S., Park, T.-J. & Jun, M.-J. (1999). Acta Cryst. C55, 850–852.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuh, S., Park, Y. J., Lough, A. J. & Jun, M.-J. (2000). Acta Cryst. C56, 416–417.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuh, S., Sung, K.-M., Cho, Y., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 1473–1479.  CSD CrossRef CAS Web of Science Google Scholar
First citationNa, K.-I., Huh, S., Sung, K.-M. & Jun, M.-J. (1996). Polyhedron, 15, 1841–1846.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSánchez-Delgado, R. A., Valencia, N., Márquez-Silva, R.-L., Andriollo, A. & Medina, M. (1986). Inorg. Chem. 25, 1106–1111.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1544-m1545
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds