organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl­ammonium 2,3,4,5-tetra­chloro-6-meth­oxy­carbonyl­benzoate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: zupeiliang@163.com

(Received 3 September 2008; accepted 6 November 2008; online 13 November 2008)

In the title compound, C4H12N+·C9H3Cl4O4, the benzene ring forms dihedral angles of 62.4 (2) and 64.0 (3)°, respectively, with the essentially planar methoxy­carbonyl and carboxyl­ate groups. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds connect anions and cations, forming one-dimensional chains along [010].

Related literature

For background information, see: Ungwitayatorn et al. (2001[Ungwitayatorn, J., Matayatsuk, C. & Sothipatcharasai, P. (2001). Sci. Asia, 27, 245-250.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·C9H3Cl4O4

  • Mr = 391.06

  • Monoclinic, P 21

  • a = 9.0193 (14) Å

  • b = 6.5084 (11) Å

  • c = 14.5965 (15) Å

  • β = 91.7570 (10)°

  • V = 856.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 (2) K

  • 0.53 × 0.48 × 0.44 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SABABS. University of Göttingen, Germany.]) Tmin = 0.706, Tmax = 0.747

  • 4281 measured reflections

  • 2790 independent reflections

  • 2364 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.04

  • 2790 reflections

  • 205 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1147 Friedel pairs

  • Flack parameter: 0.00 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.97 2.838 (4) 165
N1—H1B⋯O4ii 0.89 1.97 2.850 (4) 168
N1—H1C⋯O3iii 0.89 1.94 2.818 (4) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalimides are compounds which can posses biological activity (see: e.g. Ungwitayatorn et al., 2001). 2-(Methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid is an intermediate in the sysnthesis of tetrachlorophthalimides and their derivatives. In this paper, the structure of the title compound (I) is reported. The asymmetric unit contains one tert-butylammonium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzene-1-carboxylate anion (Fig. 1). The bond lengths in (I) are normal (Allen et al., 1987). In the crystal structure, intermolecular N-H···O hydrogen bonds connect anions and cations to form one-dimensional chains along [O10].

Related literature top

For background information, see: Ungwitayatorn et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of tetrachlorophthalic anhydride (2.86 g, 0.01 mol) and methanol (20 ml) was refluxed for 0.5 h and then tert-butylamine (0.73 g, 0.01 mol) was added and the mixture stirred for 4 h at room temperature. After filtration, the filtrate was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding-model approximation with C—H = 0.96 Å, N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N, C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds indicated by dashed lines.
tert-Butylammonium 2,3,4,5-tetrachloro-6-methoxycarbonylbenzoate top
Crystal data top
C4H12N+·C9H3Cl4O4F(000) = 400
Mr = 391.06Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2177 reflections
a = 9.0193 (14) Åθ = 2.3–27.0°
b = 6.5084 (11) ŵ = 0.71 mm1
c = 14.5965 (15) ÅT = 298 K
β = 91.757 (1)°Block, colorless
V = 856.4 (2) Å30.53 × 0.48 × 0.44 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube2364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.706, Tmax = 0.747k = 77
4281 measured reflectionsl = 1517
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.048P)2 + 0.2322P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
2790 reflectionsΔρmin = 0.28 e Å3
205 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.075 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1147 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (9)
Crystal data top
C4H12N+·C9H3Cl4O4V = 856.4 (2) Å3
Mr = 391.06Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.0193 (14) ŵ = 0.71 mm1
b = 6.5084 (11) ÅT = 298 K
c = 14.5965 (15) Å0.53 × 0.48 × 0.44 mm
β = 91.757 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2364 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.747Rint = 0.043
4281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.28 e Å3
2790 reflectionsAbsolute structure: Flack (1983), 1147 Friedel pairs
205 parametersAbsolute structure parameter: 0.00 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17713 (11)0.5505 (2)0.24305 (8)0.0650 (4)
Cl20.10033 (15)0.2412 (2)0.09021 (8)0.0730 (4)
Cl30.20894 (14)0.2526 (2)0.00306 (8)0.0670 (4)
Cl40.44428 (12)0.5681 (2)0.07197 (8)0.0645 (4)
N10.9054 (3)0.8116 (5)0.5564 (2)0.0332 (7)
H1A0.92440.93280.58250.050*
H1B0.96270.79540.50840.050*
H1C0.92410.71190.59690.050*
O10.4059 (3)0.9677 (5)0.1703 (2)0.0561 (8)
O20.4110 (3)0.8206 (5)0.30813 (19)0.0555 (8)
O30.0729 (3)1.0097 (4)0.30549 (18)0.0462 (7)
O40.0532 (3)0.7277 (4)0.39073 (15)0.0375 (6)
C10.2425 (4)0.6942 (6)0.1932 (2)0.0347 (9)
C20.1041 (4)0.6869 (6)0.2345 (2)0.0323 (8)
C30.0013 (4)0.5489 (7)0.1999 (2)0.0375 (9)
C40.0307 (5)0.4133 (7)0.1295 (3)0.0431 (10)
C50.1686 (5)0.4186 (7)0.0903 (2)0.0408 (9)
C60.2727 (4)0.5608 (7)0.1215 (2)0.0380 (9)
C70.3626 (4)0.8340 (6)0.2319 (3)0.0378 (9)
C80.0731 (4)0.8226 (6)0.3175 (2)0.0305 (8)
C90.5402 (5)1.0814 (9)0.1945 (4)0.0701 (15)
H9A0.62160.98740.20270.105*
H9B0.52651.15540.25050.105*
H9C0.56141.17660.14640.105*
C100.7440 (4)0.8028 (6)0.5251 (3)0.0367 (9)
C110.7195 (5)0.9690 (7)0.4533 (3)0.0511 (11)
H11A0.73911.10110.48040.077*
H11B0.61860.96420.43050.077*
H11C0.78520.94690.40380.077*
C120.7164 (4)0.5891 (7)0.4845 (3)0.0469 (10)
H12A0.78740.56220.43830.070*
H12B0.61800.58310.45760.070*
H12C0.72640.48780.53210.070*
C130.6520 (4)0.8364 (7)0.6089 (3)0.0487 (11)
H13A0.54970.80820.59380.073*
H13B0.66220.97630.62900.073*
H13C0.68590.74590.65710.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (6)0.0959 (10)0.0596 (7)0.0201 (6)0.0101 (5)0.0272 (7)
Cl20.0733 (8)0.0769 (10)0.0685 (8)0.0297 (7)0.0010 (6)0.0322 (7)
Cl30.0782 (8)0.0697 (9)0.0532 (6)0.0129 (7)0.0033 (5)0.0277 (7)
Cl40.0511 (6)0.0811 (9)0.0627 (7)0.0029 (6)0.0236 (5)0.0087 (7)
N10.0333 (15)0.0302 (17)0.0364 (16)0.0004 (13)0.0033 (12)0.0002 (14)
O10.0603 (19)0.059 (2)0.0495 (17)0.0197 (15)0.0029 (14)0.0158 (15)
O20.0606 (18)0.061 (2)0.0437 (16)0.0225 (16)0.0119 (14)0.0098 (15)
O30.0623 (18)0.0323 (18)0.0439 (15)0.0008 (13)0.0001 (13)0.0013 (12)
O40.0446 (14)0.0374 (15)0.0308 (13)0.0003 (13)0.0076 (11)0.0008 (12)
C10.039 (2)0.035 (2)0.0301 (18)0.0012 (16)0.0010 (15)0.0053 (16)
C20.0373 (19)0.034 (2)0.0259 (17)0.0030 (16)0.0004 (15)0.0015 (15)
C30.0349 (19)0.045 (2)0.0321 (18)0.0021 (19)0.0002 (14)0.0037 (19)
C40.050 (2)0.042 (2)0.036 (2)0.0076 (19)0.0054 (18)0.0059 (18)
C50.050 (2)0.042 (2)0.0309 (19)0.0048 (19)0.0001 (17)0.0057 (17)
C60.0403 (19)0.045 (2)0.0286 (17)0.007 (2)0.0061 (15)0.0042 (19)
C70.036 (2)0.040 (2)0.038 (2)0.0019 (17)0.0050 (17)0.0023 (18)
C80.0290 (18)0.028 (2)0.0340 (19)0.0036 (16)0.0012 (15)0.0000 (16)
C90.064 (3)0.070 (4)0.078 (3)0.032 (3)0.022 (2)0.003 (3)
C100.0268 (17)0.033 (2)0.050 (2)0.0016 (16)0.0027 (15)0.0039 (18)
C110.045 (2)0.050 (3)0.057 (3)0.007 (2)0.011 (2)0.010 (2)
C120.039 (2)0.042 (3)0.059 (3)0.0065 (19)0.0001 (18)0.013 (2)
C130.040 (2)0.045 (3)0.062 (3)0.006 (2)0.0158 (19)0.007 (2)
Geometric parameters (Å, º) top
Cl1—C31.724 (4)C3—C41.392 (6)
Cl2—C41.714 (4)C4—C51.385 (6)
Cl3—C51.718 (4)C5—C61.385 (6)
Cl4—C61.729 (4)C9—H9A0.9600
N1—C101.513 (5)C9—H9B0.9600
N1—H1A0.8900C9—H9C0.9600
N1—H1B0.8900C10—C131.515 (5)
N1—H1C0.8900C10—C111.517 (6)
O1—C71.319 (5)C10—C121.529 (6)
O1—C91.455 (5)C11—H11A0.9600
O2—C71.186 (4)C11—H11B0.9600
O3—C81.230 (5)C11—H11C0.9600
O4—C81.252 (4)C12—H12A0.9600
C1—C61.394 (5)C12—H12B0.9600
C1—C21.404 (5)C12—H12C0.9600
C1—C71.511 (5)C13—H13A0.9600
C2—C31.391 (5)C13—H13B0.9600
C2—C81.532 (5)C13—H13C0.9600
C10—N1—H1A109.5O1—C9—H9A109.5
C10—N1—H1B109.5O1—C9—H9B109.5
H1A—N1—H1B109.5H9A—C9—H9B109.5
C10—N1—H1C109.5O1—C9—H9C109.5
H1A—N1—H1C109.5H9A—C9—H9C109.5
H1B—N1—H1C109.5H9B—C9—H9C109.5
C7—O1—C9115.6 (3)N1—C10—C13107.2 (3)
C6—C1—C2119.9 (3)N1—C10—C11107.5 (3)
C6—C1—C7120.1 (3)C13—C10—C11112.5 (3)
C2—C1—C7119.7 (3)N1—C10—C12107.2 (3)
C3—C2—C1118.2 (3)C13—C10—C12110.9 (4)
C3—C2—C8121.3 (3)C11—C10—C12111.2 (3)
C1—C2—C8120.5 (3)C10—C11—H11A109.5
C2—C3—C4121.5 (3)C10—C11—H11B109.5
C2—C3—Cl1119.3 (3)H11A—C11—H11B109.5
C4—C3—Cl1119.1 (3)C10—C11—H11C109.5
C5—C4—C3119.8 (4)H11A—C11—H11C109.5
C5—C4—Cl2119.8 (3)H11B—C11—H11C109.5
C3—C4—Cl2120.3 (3)C10—C12—H12A109.5
C6—C5—C4119.3 (4)C10—C12—H12B109.5
C6—C5—Cl3120.4 (3)H12A—C12—H12B109.5
C4—C5—Cl3120.2 (3)C10—C12—H12C109.5
C5—C6—C1121.1 (3)H12A—C12—H12C109.5
C5—C6—Cl4119.2 (3)H12B—C12—H12C109.5
C1—C6—Cl4119.7 (3)C10—C13—H13A109.5
O2—C7—O1125.4 (4)C10—C13—H13B109.5
O2—C7—C1123.1 (4)H13A—C13—H13B109.5
O1—C7—C1111.5 (3)C10—C13—H13C109.5
O3—C8—O4127.6 (3)H13A—C13—H13C109.5
O3—C8—C2117.2 (3)H13B—C13—H13C109.5
O4—C8—C2115.2 (3)
C6—C1—C2—C32.0 (5)Cl3—C5—C6—C1179.0 (3)
C7—C1—C2—C3176.8 (3)C4—C5—C6—Cl4179.6 (3)
C6—C1—C2—C8175.9 (3)Cl3—C5—C6—Cl40.5 (5)
C7—C1—C2—C81.2 (5)C2—C1—C6—C50.5 (5)
C1—C2—C3—C43.3 (6)C7—C1—C6—C5174.2 (4)
C8—C2—C3—C4174.6 (4)C2—C1—C6—Cl4179.1 (3)
C1—C2—C3—Cl1174.8 (3)C7—C1—C6—Cl44.3 (5)
C8—C2—C3—Cl17.3 (5)C9—O1—C7—O211.0 (6)
C2—C3—C4—C52.0 (6)C9—O1—C7—C1168.3 (4)
Cl1—C3—C4—C5176.1 (3)C6—C1—C7—O2115.3 (4)
C2—C3—C4—Cl2178.5 (3)C2—C1—C7—O259.4 (5)
Cl1—C3—C4—Cl23.4 (5)C6—C1—C7—O164.0 (5)
C3—C4—C5—C60.6 (6)C2—C1—C7—O1121.3 (4)
Cl2—C4—C5—C6178.8 (3)C3—C2—C8—O3117.6 (4)
C3—C4—C5—Cl3179.8 (3)C1—C2—C8—O364.5 (5)
Cl2—C4—C5—Cl30.3 (5)C3—C2—C8—O463.6 (5)
C4—C5—C6—C11.9 (6)C1—C2—C8—O4114.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.972.838 (4)165
N1—H1B···O4ii0.891.972.850 (4)168
N1—H1C···O3iii0.891.942.818 (4)169
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H12N+·C9H3Cl4O4
Mr391.06
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.0193 (14), 6.5084 (11), 14.5965 (15)
β (°) 91.757 (1)
V3)856.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.53 × 0.48 × 0.44
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.706, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
4281, 2790, 2364
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.04
No. of reflections2790
No. of parameters205
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.28
Absolute structureFlack (1983), 1147 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.972.838 (4)165
N1—H1B···O4ii0.891.972.850 (4)168
N1—H1C···O3iii0.891.942.818 (4)169
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x+1, y1/2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. Y2007B61).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SABABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUngwitayatorn, J., Matayatsuk, C. & Sothipatcharasai, P. (2001). Sci. Asia, 27, 245–250.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds