metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-meth­­oxy-6-[(3-meth­oxy­prop­yl)imino­meth­yl]phenolato-κ2N,O1}copper(II)

aNational Changhua University of Education, Department of Chemistry, Changhua 50058, Taiwan
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 24 October 2008; accepted 29 October 2008; online 8 November 2008)

The title complex, [Cu(C12H16NO3)2], adopts a distorted square-planar coordination geometry with the CuII ion situated on a crystallographic inversion center. The two Schiff base ligands are coordinated in a trans fashion. In the crystal structure, non-classical inter­molecular C—H⋯O hydrogen bonds involving the ether O atoms link the Schiff base mol­ecules into a two-dimensional network parallel to (101).

Related literature

For similar copper(II) structures with Schiff base ligands: see: Akitsu & Einaga (2004[Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436-m438.]); Bluhm et al. (2003[Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878-8885.]); Castiñeiras et al. (1990[Castiñeiras, A., Hiller, W., Strähle, J., Romero, J., Bastida, R. & Sousa, A. (1990). Acta Cryst. C46, 770-772.]); Costamagna et al. (1998[Costamagna, J., Caruso, F., Vargas, J. & Manriquez, V. (1998). Inorg. Chim. Acta, 267, 151-158.]); King et al. (1973[King, A. W., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1819-1822.]); Lacroix et al. (2004[Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.]); Zhang et al. (2001[Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166-1167.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H16NO3)2]

  • Mr = 508.06

  • Monoclinic, P 21 /c

  • a = 11.2189 (9) Å

  • b = 10.7004 (8) Å

  • c = 9.5002 (7) Å

  • β = 96.912 (1)°

  • V = 1132.18 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.614, Tmax = 0.668

  • 6343 measured reflections

  • 2298 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.09

  • 2298 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.98 2.58 3.476 (2) 151
C9—H9A⋯O1ii 0.99 2.31 2.782 (2) 108
C9—H9B⋯O3 0.99 2.55 2.918 (2) 102
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base (E)-2-methoxy-6-[(3-methoxypropyl)iminomethyl]phenol reacts with copper(II) nitrate in methanol to form the title complex. In situ deprotonation of the phenolic hydrogen occurred leading to formation of the O/N-bidentate ligand. The title complex consists of two bidentate ligands coordinating in a trans fashion. It adopts a square-planar coordination geometry with the Cu atom located on a crystallographic inversion center. Schiff base Cu(II) complexes similar to the title complex have been reported in the literature (Akitsu & Einaga, 2004; Bluhm et al., 2003; Castiñeiras et al., 1990; Costamagna et al., 1998; King et al., 1973; Lacroix et al., 2004; Zhang et al., 2001).

Both intramolecular and intermolecular non-classical H-bonds of the type C-H···O exist (Table 1). The intermolecular H-bonds link the complex into a two-dimensional network.

Related literature top

For similar copper(II) structures with Schiff base ligands: see: Akitsu & Einaga (2004); Bluhm et al. (2003); Castiñeiras et al. (1990); Costamagna et al. (1998); King et al. (1973); Lacroix et al. (2004); Zhang et al. (2001).

Experimental top

Synthesis of (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol: The compound was synthesized by the condensation reaction between O-vaniline and NH2(CH2)3OMe in methanol. After complete removal of the solvent, the resulting yellow liquid was used without purification.

Synthesis of the title complex: A methanolic solution of Cu(NO3)2 (1 mmol, 188 mg) and (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol (2 mmol, 446 mg) was stirred for 30 min. The solution was then kept for 7 days to yield crystals suitable for X-ray diffraction study.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98, Cmethylene—H = 0.99, Cmethine—H = 0.95 Å while Uiso(H) = 1.5Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for all the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A packing diagram of the title compound along the c axis. Hyrogen bonds are shown as dashed lines.
Bis{2-methoxy-6-[(3-methoxypropyl)iminomethyl]phenolato- κ2N,O1}copper(II) top
Crystal data top
[Cu(C12H16NO3)2]F(000) = 534
Mr = 508.06Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3703 reflections
a = 11.2189 (9) Åθ = 2.6–26.4°
b = 10.7004 (8) ŵ = 1.01 mm1
c = 9.5002 (7) ÅT = 100 K
β = 96.912 (1)°Block, black
V = 1132.18 (15) Å30.50 × 0.50 × 0.40 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2298 independent reflections
Radiation source: fine-focus sealed tube, Bruker KFN-Mo-2K-902065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 137
Tmin = 0.614, Tmax = 0.668k = 1312
6343 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0531P]
where P = (Fo2 + 2Fc2)/3
2298 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C12H16NO3)2]V = 1132.18 (15) Å3
Mr = 508.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2189 (9) ŵ = 1.01 mm1
b = 10.7004 (8) ÅT = 100 K
c = 9.5002 (7) Å0.50 × 0.50 × 0.40 mm
β = 96.912 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2298 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2065 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.668Rint = 0.032
6343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2298 reflectionsΔρmin = 0.37 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.01161 (11)
N10.06486 (12)0.67268 (12)0.54175 (13)0.0124 (3)
O10.10464 (10)0.55690 (11)0.34077 (12)0.0157 (3)
O20.26520 (10)0.57869 (11)0.11946 (12)0.0168 (3)
O30.38383 (10)0.83717 (11)0.73181 (13)0.0203 (3)
C10.12843 (14)0.67057 (15)0.29658 (16)0.0123 (3)
C20.21677 (14)0.68788 (15)0.17655 (16)0.0133 (3)
C30.24800 (15)0.80571 (16)0.12650 (17)0.0146 (3)
H30.30840.81530.04810.018*
C40.19103 (15)0.91184 (16)0.19081 (17)0.0160 (4)
H40.21310.99300.15640.019*
C50.10354 (15)0.89779 (15)0.30333 (17)0.0146 (3)
H50.06390.96950.34530.018*
C60.07147 (15)0.77820 (15)0.35771 (16)0.0128 (3)
C70.02158 (15)0.77112 (16)0.47516 (16)0.0134 (3)
H70.05570.84860.50810.016*
C80.35395 (15)0.59005 (17)0.00057 (17)0.0185 (4)
H8A0.42480.63250.02750.028*
H8B0.37670.50670.03720.028*
H8C0.32140.63880.07440.028*
C90.16306 (14)0.69566 (15)0.65644 (16)0.0136 (3)
H9A0.15120.64290.73920.016*
H9B0.16130.78420.68620.016*
C100.28466 (15)0.66641 (16)0.60836 (17)0.0166 (4)
H10A0.29020.57560.59040.020*
H10B0.29190.71070.51830.020*
C110.38687 (15)0.70517 (15)0.71811 (18)0.0161 (4)
H11A0.37810.66520.81030.019*
H11B0.46450.67870.68810.019*
C120.47976 (15)0.88352 (17)0.82805 (18)0.0214 (4)
H12A0.47760.84440.92100.032*
H12B0.47190.97430.83690.032*
H12C0.55620.86390.79290.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01075 (17)0.01035 (17)0.01270 (16)0.00026 (10)0.00282 (11)0.00036 (10)
N10.0102 (7)0.0140 (7)0.0128 (6)0.0004 (6)0.0000 (6)0.0016 (6)
O10.0166 (6)0.0117 (6)0.0170 (6)0.0001 (5)0.0057 (5)0.0011 (5)
O20.0164 (6)0.0158 (6)0.0163 (6)0.0019 (5)0.0061 (5)0.0006 (5)
O30.0167 (6)0.0128 (6)0.0286 (7)0.0022 (5)0.0085 (5)0.0003 (5)
C10.0108 (8)0.0133 (8)0.0133 (7)0.0012 (7)0.0033 (6)0.0004 (6)
C20.0116 (8)0.0149 (8)0.0138 (7)0.0009 (7)0.0027 (7)0.0009 (6)
C30.0114 (8)0.0191 (9)0.0130 (7)0.0020 (7)0.0002 (6)0.0032 (7)
C40.0171 (9)0.0135 (8)0.0176 (8)0.0024 (7)0.0029 (7)0.0030 (7)
C50.0165 (9)0.0108 (8)0.0169 (8)0.0004 (7)0.0032 (7)0.0011 (7)
C60.0115 (8)0.0141 (8)0.0132 (8)0.0013 (7)0.0029 (7)0.0003 (6)
C70.0136 (8)0.0120 (8)0.0149 (8)0.0014 (6)0.0024 (7)0.0026 (6)
C80.0157 (9)0.0219 (9)0.0166 (8)0.0013 (7)0.0039 (7)0.0006 (7)
C90.0115 (8)0.0143 (8)0.0140 (8)0.0008 (7)0.0025 (6)0.0021 (6)
C100.0146 (9)0.0172 (8)0.0176 (8)0.0001 (7)0.0000 (7)0.0027 (7)
C110.0136 (8)0.0145 (8)0.0198 (8)0.0005 (7)0.0002 (7)0.0012 (7)
C120.0175 (9)0.0200 (9)0.0256 (9)0.0055 (7)0.0022 (8)0.0030 (8)
Geometric parameters (Å, º) top
Cu1—O1i1.9000 (11)C5—C61.410 (2)
Cu1—O11.9000 (11)C5—H50.9500
Cu1—N1i2.0079 (13)C6—C71.435 (2)
Cu1—N12.0079 (13)C7—H70.9500
N1—C71.293 (2)C8—H8A0.9800
N1—C91.474 (2)C8—H8B0.9800
O1—C11.3038 (19)C8—H8C0.9800
O2—C21.3724 (19)C9—C101.522 (2)
O2—C81.4258 (19)C9—H9A0.9900
O3—C121.415 (2)C9—H9B0.9900
O3—C111.419 (2)C10—C111.512 (2)
C1—C61.408 (2)C10—H10A0.9900
C1—C21.430 (2)C10—H10B0.9900
C2—C31.378 (2)C11—H11A0.9900
C3—C41.406 (2)C11—H11B0.9900
C3—H30.9500C12—H12A0.9800
C4—C51.370 (2)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
O1i—Cu1—O1180.0C6—C7—H7115.9
O1i—Cu1—N1i92.11 (5)O2—C8—H8A109.5
O1—Cu1—N1i87.89 (5)O2—C8—H8B109.5
O1i—Cu1—N187.89 (5)H8A—C8—H8B109.5
O1—Cu1—N192.11 (5)O2—C8—H8C109.5
N1i—Cu1—N1180.00 (7)H8A—C8—H8C109.5
C7—N1—C9115.41 (14)H8B—C8—H8C109.5
C7—N1—Cu1123.18 (11)N1—C9—C10111.16 (12)
C9—N1—Cu1121.36 (10)N1—C9—H9A109.4
C1—O1—Cu1129.66 (11)C10—C9—H9A109.4
C2—O2—C8116.66 (13)N1—C9—H9B109.4
C12—O3—C11112.53 (13)C10—C9—H9B109.4
O1—C1—C6124.41 (15)H9A—C9—H9B108.0
O1—C1—C2118.23 (14)C11—C10—C9111.67 (13)
C6—C1—C2117.35 (14)C11—C10—H10A109.3
O2—C2—C3124.78 (15)C9—C10—H10A109.3
O2—C2—C1114.10 (14)C11—C10—H10B109.3
C3—C2—C1121.12 (15)C9—C10—H10B109.3
C2—C3—C4120.37 (15)H10A—C10—H10B107.9
C2—C3—H3119.8O3—C11—C10108.16 (14)
C4—C3—H3119.8O3—C11—H11A110.1
C5—C4—C3119.73 (16)C10—C11—H11A110.1
C5—C4—H4120.1O3—C11—H11B110.1
C3—C4—H4120.1C10—C11—H11B110.1
C4—C5—C6120.85 (16)H11A—C11—H11B108.4
C4—C5—H5119.6O3—C12—H12A109.5
C6—C5—H5119.6O3—C12—H12B109.5
C1—C6—C5120.53 (15)H12A—C12—H12B109.5
C1—C6—C7121.93 (15)O3—C12—H12C109.5
C5—C6—C7117.53 (15)H12A—C12—H12C109.5
N1—C7—C6128.21 (16)H12B—C12—H12C109.5
N1—C7—H7115.9
O1i—Cu1—N1—C7173.21 (13)C3—C4—C5—C61.4 (2)
O1—Cu1—N1—C76.79 (13)O1—C1—C6—C5179.61 (15)
O1i—Cu1—N1—C94.07 (11)C2—C1—C6—C51.5 (2)
O1—Cu1—N1—C9175.93 (11)O1—C1—C6—C71.2 (3)
N1i—Cu1—O1—C1172.75 (14)C2—C1—C6—C7177.67 (14)
N1—Cu1—O1—C17.25 (14)C4—C5—C6—C10.4 (2)
Cu1—O1—C1—C64.5 (2)C4—C5—C6—C7179.60 (14)
Cu1—O1—C1—C2176.60 (10)C9—N1—C7—C6178.39 (15)
C8—O2—C2—C30.2 (2)Cu1—N1—C7—C64.2 (2)
C8—O2—C2—C1179.96 (13)C1—C6—C7—N11.1 (3)
O1—C1—C2—O21.3 (2)C5—C6—C7—N1179.74 (16)
C6—C1—C2—O2177.71 (13)C7—N1—C9—C10101.17 (16)
O1—C1—C2—C3178.53 (14)Cu1—N1—C9—C1081.35 (15)
C6—C1—C2—C32.5 (2)N1—C9—C10—C11172.66 (13)
O2—C2—C3—C4178.62 (14)C12—O3—C11—C10177.34 (13)
C1—C2—C3—C41.6 (2)C9—C10—C11—O364.55 (18)
C2—C3—C4—C50.4 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3ii0.982.583.476 (2)151
C9—H9A···O1i0.992.312.782 (2)108
C9—H9B···O30.992.552.918 (2)102
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H16NO3)2]
Mr508.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2189 (9), 10.7004 (8), 9.5002 (7)
β (°) 96.912 (1)
V3)1132.18 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.614, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
6343, 2298, 2065
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.09
No. of reflections2298
No. of parameters153
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.982.583.476 (2)151.4
C9—H9A···O1ii0.992.312.782 (2)108.3
C9—H9B···O30.992.552.918 (2)102.0
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationAkitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem. 42, 8878–8885.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastiñeiras, A., Hiller, W., Strähle, J., Romero, J., Bastida, R. & Sousa, A. (1990). Acta Cryst. C46, 770–772.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationCostamagna, J., Caruso, F., Vargas, J. & Manriquez, V. (1998). Inorg. Chim. Acta, 267, 151–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationKing, A. W., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1819–1822.  CSD CrossRef Web of Science Google Scholar
First citationLacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds