organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R)-4-(2-Allyl-2H-1,2,3-triazol-4-yl)-1,2-O-iso­propyl­­idene-L-threose

aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, bSummit plc, 91 Milton Park, Abingdon, Oxfordshire OX14 4RY, England, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.no.ac.uk

(Received 29 October 2008; accepted 6 November 2008; online 13 November 2008)

X-ray crystallography unequivocally confirmed the structure of the title compound, C12H17N3O4, as (4R)-4-(2-allyl-2H-1,2,3-triazol-4-yl)-1,2-O-isopropyl­idene-L-threose. The absolute configuration was determined by the use of D-glucorono-3,6-lactone as the starting material. The crystal structure consists of hydrogen-bonded chains of mol­ecules running parallel to the a axis. There are no unusual packing features.

Related literature

For related background information on the biotechnological inter­conversion of monosaccharides and other sugars, see: Izumori (2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. (2006). J. Biotechnol. 124, 717-722.]); Granstrom et al. (2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]); Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739-745.]); Booth et al. (2008[Booth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385.]); Jenkinson, Booth, Gullapalli et al. (2008[Jenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705-o1706.]); Jenkinson, Booth, Yoshihara et al. (2008[Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.]); Gullapalli et al. (2007[Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995-2000.]); Jenkinson, Booth, Best et al. (2008[Jenkinson, S. F., Booth, K. V., Best, D., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2011-o2012.]). For related literature, see: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3O4

  • Mr = 267.28

  • Orthorhombic, P 21 21 21

  • a = 5.3959 (2) Å

  • b = 9.6233 (3) Å

  • c = 25.4532 (9) Å

  • V = 1321.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.82, Tmax = 1.00 (expected range = 0.817–0.997)

  • 9466 measured reflections

  • 1528 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 0.93

  • 1528 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H111⋯O8i 0.88 1.95 2.822 (4) 170
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The process for the biotechnological interconversion of monosaccharides developed by Izumori (Izumori, 2002; Izumori, 2006; Granstrom et al., 2004), has been seen to be generally applicable to other sugar derivatives such as 1-deoxy sugars (Yoshihara et al., 2008; Booth et al. 2008; Jenkinson, Booth, Gullapalli et al., 2008; Jenkinson, Booth, Yoshihara et al., 2008; Gullapalli et al., 2007). To evaluate the applicability of this process to 2-deoxy sugars and their derivatives a variety of carbon chain extension reactions were investigated, for example, addition of lithium tert-butyl acetate to sugar lactones (Jenkinson, Booth, Best et al., 2008) or addition of allyl magnesium bromide to an aldose.

Reaction of lactol 1 (Fig. 1) with 2.5 equivalents of allyl magnesium bromide generated a single isolable product along with recovered starting material. X-ray crystallography identified the compound as 4R-4-(2-allyl-2H-1,2,3-triazole-4-yl)-1,2-O-isopropylidene-L-threose 2 (Fig. 2) rather than the anticipated addition product 3. The crystal structure was seen to consist of alternating chains of hydrogen-bonded molecules running parallel to the a-axis (Fig. 3).Only classic intermolecular hydrogen bonding has been considered. The absolute configuration was determined from the starting material.

Related literature top

For related background information on the biotechnological interconversion of monosaccharides and other sugars, see: Izumori (2002, 2006); Granstrom et al. (2004); Yoshihara et al. (2008); Booth et al. (2008); Jenkinson, Booth, Gullapalli et al. (2008); Jenkinson, Booth, Yoshihara et al. (2008); Gullapalli et al. (2007); Jenkinson, Booth, Best et al. (2008). For related literature, see: Görbitz (1999).

Experimental top

The title compound was recrystallized by vapour diffusion from a mixture of diethyl ether and cyclohexane: m.p. 361–364 K; [α]D25 -13.9 (c, 0.69 in CHCl3).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram for the title compound projected along the b-axis. Hydrogen bonds are indicated by dotted lines.
(4R)-4-(2-Allyl-2H-1,2,3-triazol-4-yl)-1,2-O- isopropylidene-L-threose top
Crystal data top
C12H17N3O4F(000) = 568
Mr = 267.28Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1500 reflections
a = 5.3959 (2) Åθ = 5–26°
b = 9.6233 (3) ŵ = 0.10 mm1
c = 25.4532 (9) ÅT = 150 K
V = 1321.69 (8) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω scansθmax = 26.0°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.82, Tmax = 1.00k = 1111
9466 measured reflectionsl = 3031
1528 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(F2) + (0.04P)2 + 0.59P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.93(Δ/σ)max = 0.000120
1528 reflectionsΔρmax = 0.32 e Å3
172 parametersΔρmin = 0.33 e Å3
0 restraints
Crystal data top
C12H17N3O4V = 1321.69 (8) Å3
Mr = 267.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3959 (2) ŵ = 0.10 mm1
b = 9.6233 (3) ÅT = 150 K
c = 25.4532 (9) Å0.30 × 0.20 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1528 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1194 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 1.00Rint = 0.096
9466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.93Δρmax = 0.32 e Å3
1528 reflectionsΔρmin = 0.33 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0189 (4)0.60546 (19)0.14662 (7)0.0395
C21.0670 (5)0.7244 (3)0.17865 (11)0.0366
C30.8174 (6)0.8008 (3)0.17938 (10)0.0374
O40.6798 (4)0.7427 (2)0.13781 (7)0.0436
C50.8248 (6)0.6390 (3)0.11107 (11)0.0407
C60.9294 (7)0.7022 (4)0.06094 (12)0.0579
C70.6697 (7)0.5117 (4)0.10209 (15)0.0608
O80.7063 (4)0.7727 (2)0.22853 (7)0.0394
C90.8362 (6)0.6572 (3)0.25347 (11)0.0371
C101.1041 (5)0.6779 (3)0.23535 (11)0.0371
O111.2131 (4)0.7866 (2)0.26506 (8)0.0425
C120.7862 (6)0.6641 (3)0.31060 (11)0.0359
N130.6792 (5)0.5578 (2)0.33594 (9)0.0372
N140.6586 (5)0.6032 (2)0.38514 (9)0.0372
N150.7386 (5)0.7336 (2)0.39351 (9)0.0406
C160.8223 (6)0.7724 (3)0.34651 (11)0.0396
C170.5321 (6)0.5246 (3)0.42598 (12)0.0404
C180.2777 (6)0.5809 (3)0.43621 (12)0.0439
C190.1964 (7)0.6160 (3)0.48272 (12)0.0499
H211.20900.78050.16650.0468*
H310.84200.90450.17480.0468*
H610.78970.73210.03900.0897*
H621.03080.63300.04330.0901*
H631.02620.78150.07270.0903*
H730.53300.53600.07900.0953*
H720.76990.44020.08590.0956*
H710.60440.48090.13560.0950*
H910.77570.56740.23820.0502*
H1011.19900.58960.23600.0485*
H1610.89890.85950.33890.0499*
H1710.51560.42880.41380.0506*
H1720.63240.53000.45840.0502*
H1810.17300.59140.40600.0573*
H1920.03140.65240.48570.0646*
H1910.30380.60460.51280.0648*
H1111.36790.79270.25450.0633*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0413 (12)0.0331 (10)0.0440 (11)0.0027 (10)0.0005 (10)0.0048 (9)
C20.0328 (14)0.0335 (15)0.0434 (16)0.0013 (13)0.0025 (13)0.0016 (13)
C30.0372 (14)0.0345 (14)0.0406 (15)0.0007 (14)0.0016 (14)0.0007 (13)
O40.0369 (10)0.0492 (12)0.0447 (11)0.0076 (11)0.0044 (10)0.0066 (10)
C50.0407 (16)0.0378 (15)0.0436 (16)0.0052 (15)0.0022 (15)0.0015 (13)
C60.070 (2)0.058 (2)0.0457 (18)0.0116 (19)0.0039 (18)0.0051 (17)
C70.057 (2)0.0484 (19)0.077 (2)0.007 (2)0.013 (2)0.0080 (18)
O80.0321 (10)0.0450 (11)0.0411 (10)0.0061 (10)0.0042 (9)0.0053 (9)
C90.0349 (15)0.0313 (14)0.0451 (17)0.0007 (13)0.0013 (14)0.0035 (12)
C100.0315 (15)0.0367 (15)0.0430 (16)0.0022 (12)0.0012 (13)0.0064 (14)
O110.0292 (10)0.0498 (11)0.0486 (11)0.0048 (10)0.0023 (9)0.0075 (10)
C120.0324 (14)0.0326 (13)0.0427 (15)0.0006 (13)0.0015 (14)0.0005 (12)
N130.0381 (13)0.0328 (12)0.0408 (13)0.0013 (12)0.0040 (12)0.0010 (10)
N140.0380 (13)0.0320 (12)0.0415 (13)0.0020 (12)0.0021 (12)0.0009 (11)
N150.0456 (14)0.0334 (12)0.0429 (13)0.0006 (12)0.0012 (11)0.0013 (11)
C160.0408 (15)0.0332 (14)0.0447 (16)0.0013 (15)0.0017 (14)0.0009 (13)
C170.0420 (16)0.0359 (15)0.0433 (17)0.0005 (14)0.0062 (14)0.0027 (14)
C180.0396 (17)0.0435 (16)0.0486 (17)0.0038 (15)0.0027 (15)0.0003 (15)
C190.0482 (18)0.0462 (17)0.0552 (19)0.0032 (18)0.0095 (18)0.0042 (15)
Geometric parameters (Å, º) top
O1—C21.429 (3)C9—C121.481 (4)
O1—C51.421 (4)C9—H911.003
C2—C31.535 (4)C10—O111.419 (3)
C2—C101.524 (4)C10—H1010.992
C2—H210.987O11—H1110.879
C3—O41.409 (3)C12—N131.340 (3)
C3—O81.414 (3)C12—C161.400 (4)
C3—H311.013N13—N141.331 (3)
O4—C51.439 (3)N14—N151.344 (3)
C5—C61.522 (4)N14—C171.456 (4)
C5—C71.501 (4)N15—C161.332 (4)
C6—H610.982C16—H1610.954
C6—H620.972C17—C181.498 (4)
C6—H630.973C17—H1710.977
C7—H730.972C17—H1720.988
C7—H720.968C18—C191.307 (4)
C7—H710.969C18—H1810.959
O8—C91.459 (3)C19—H1920.960
C9—C101.531 (4)C19—H1910.967
C2—O1—C5108.4 (2)C10—C9—C12117.5 (3)
O1—C2—C3103.4 (2)O8—C9—H91109.4
O1—C2—C10109.2 (2)C10—C9—H91107.6
C3—C2—C10104.2 (2)C12—C9—H91111.1
O1—C2—H21113.6C9—C10—C2101.5 (2)
C3—C2—H21115.0C9—C10—O11109.1 (2)
C10—C2—H21110.8C2—C10—O11110.0 (2)
C2—C3—O4105.3 (2)C9—C10—H101111.8
C2—C3—O8106.9 (2)C2—C10—H101109.6
O4—C3—O8111.4 (2)O11—C10—H101114.1
C2—C3—H31110.9C10—O11—H111106.3
O4—C3—H31112.0C9—C12—N13121.1 (2)
O8—C3—H31110.2C9—C12—C16130.5 (3)
C3—O4—C5110.1 (2)N13—C12—C16108.3 (2)
O4—C5—O1104.9 (2)C12—N13—N14103.8 (2)
O4—C5—C6108.8 (2)N13—N14—N15115.4 (2)
O1—C5—C6110.6 (3)N13—N14—C17122.7 (2)
O4—C5—C7109.5 (3)N15—N14—C17121.5 (2)
O1—C5—C7108.8 (2)N14—N15—C16103.2 (2)
C6—C5—C7113.9 (3)C12—C16—N15109.3 (3)
C5—C6—H61108.0C12—C16—H161125.6
C5—C6—H62108.8N15—C16—H161125.1
H61—C6—H62111.7N14—C17—C18111.5 (2)
C5—C6—H63104.7N14—C17—H171107.9
H61—C6—H63110.9C18—C17—H171108.2
H62—C6—H63112.2N14—C17—H172108.2
C5—C7—H73108.6C18—C17—H172109.7
C5—C7—H72109.5H171—C17—H172111.4
H73—C7—H72109.7C17—C18—C19123.9 (3)
C5—C7—H71108.6C17—C18—H181116.0
H73—C7—H71109.2C19—C18—H181120.0
H72—C7—H71111.1C18—C19—H192118.6
C3—O8—C9109.1 (2)C18—C19—H191119.2
O8—C9—C10102.9 (2)H192—C19—H191122.2
O8—C9—C12107.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H161···O1i0.952.443.322 (4)154
C17—H171···O4ii0.982.463.362 (4)154
O11—H111···O8iii0.881.952.822 (4)170
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H17N3O4
Mr267.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.3959 (2), 9.6233 (3), 25.4532 (9)
V3)1321.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.82, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9466, 1528, 1194
Rint0.096
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 0.93
No. of reflections1528
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O8i0.881.952.822 (4)170
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Oxford University Crystallography Service for access to equipment.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBooth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationGullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.  Web of Science CrossRef CAS Google Scholar
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. (2006). J. Biotechnol. 124, 717–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJenkinson, S. F., Booth, K. V., Best, D., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2011–o2012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705–o1706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds