metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ-2,6-di­methyl­pyridinium-3,5-di­carboxyl­ato-κ2O3:O5)copper(II)]

aDepartment of Food and Environmental Engineering, Heilongjiang East College, Harbin 150086, People's Republic of China, and bCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: zhanghongkun2000@163.com

(Received 31 October 2008; accepted 1 November 2008; online 8 November 2008)

In the title coordination polymer, [Cu(C9H8NO4)2]n, the Cu atom, located on a twofold rotation axis, is four coordinate in a distorted square-planar environment. Each 2,6-dimethyl­pyridinium-3,5-dicarboxyl­ate anion bridges two Cu atoms, forming a two-dimensional coordination polymer. A three-dimensional supra­molecular network is built from N—H⋯O hydrogen bonds involving the pyridinium NH and the carboxyl COO groups.

Related literature

For the synthesis of 2,6-dimethyl­pyridine-3,5-dicarboxylic acid, see: Checchi et al. (1959[Checchi, S. (1959). Gazz. Chim. Ital. 89, 2151-2162.]). For the crystal structures of some of its metal complexes, see: Gao et al. (2007[Gao, J.-S., Zhang, Y.-M., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m2717.]); Shi et al. (2007[Shi, A.-E., Li, B.-Y., Hou, G.-F. & Gao, J.-S. (2007). Acta Cryst. E63, m471-m473.]); Zeng et al. (2000[Zeng, Q.-Q., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2000). CrystEngComm, 2, 73-76.], 2002[Zeng, Q.-Q., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174-5186.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H8N2O4)2]

  • Mr = 451.87

  • Orthorhombic, P b c n

  • a = 8.2003 (16) Å

  • b = 16.234 (3) Å

  • c = 13.708 (3) Å

  • V = 1824.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 291 (2) K

  • 0.26 × 0.24 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.733, Tmax = 0.801

  • 16747 measured reflections

  • 2097 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.09

  • 2097 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H8⋯O3i 0.82 (3) 1.88 (3) 2.698 (2) 177 (3)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To the best of our knowledge, there have been few reports to date on the crystal structure of 2,6-dimethylpyrine-3,5-dicarboxylic acid ligand (Zeng et al., 2000; Zeng et al., 2002: Gao et al., 2007). The crystal structure of 2,6-dimethylpyridinium-3,5-dicarboxylate ligand and Cu atom complex have been reported, namely trans-tetraaquabis (2,6-dimethylpyrinium-3,5-dicarboxylate)cooper(II) tetrahydrate, which is a discrete compound (Shi et al., 2007). In this paper, we report the new two-dimensional title complex, (I), synthesized by the recation of 2,6-dimethylpyrine-3,5-dicarboxylic acid and copper(II) dinitrate in methanol solution.

In the title compound, (Fig. 1), the Cu atom is located on a twofold rotation axis is four coordinated in a square environment that is formed by four carboxylate O atoms from four 2,6-dimethylpyridinium-3,5- dicarboxylate ligands. Each 2,6-dimethylpyridinium-3,5-dicarboxylate ligand bridges two Cu atom to form a two-dimensional supramolecular network parallel the ab plane (Fig. 2). In addition, N1—H8···O3i hydrogen bonds link these adjacent plane into a three-dimensional supramolecular network (Table 1).

Related literature top

For the synthesis of 2,6-dimethylpyridine-3,5-dicarboxylic acid, see: Checchi et al. (1959). For the crystal structures of its metal complexes, see: Gao et al. (2007); Shi et al. (2007); Zeng et al. (2000, 2002).

Experimental top

2,6-Dimethylpyridine-3,5-dicarboxylic acid was prepared by basic hydrolysis of diethyl 2,6-dimethylpyridine-3,5-dicarboxylate, prepared according to Checchi (1959). Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (25.1 g, 0.1 mol) and potassium hydroxide (13.44 g, 0.24 mol) were dissolved in 150 ml e thanol and 150 ml water mixed solution, then stirred for three hours under reflux conditions. 10.5 g 2,6-Dimethylpyridine-3,5-dicarboxylic acid, a white precipitate, formed by adjusting pH of solution to 3 with 0.1 M HCl after evaporation of ethanol.

The complex (I) was synthesized with coppert(II) dinitrate (0.368 g, 2 mmol) and 2,6-dimethylpyridine-3,5-dicarboxylic acid (0.390 g, 2 mmol) were dissolved in methanol and the pH was adjusted to 6 with 0.01M sodium hydroxide. Black crystals were separated from the filtered solution after several days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å, 0.97 Å for aromatic and methyl H atoms respectively; Uiso(H) was set to = 1.2Ueq of the carrier atom (1.5 Ueq for methyl H atoms). The H8 atoms bond to N1 atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. [symmetry codes: (I): -x - 1, -y + 1, -z; (II): x - 1, 3/2 - y, -1/2 + z; (III): x, -1/2 - y, -1/2 + z]
[Figure 2] Fig. 2. Part of the polymeric structure of (I), showing a two-dimensional network.
Poly[bis(µ-2,6-dimethylpyridinium-3,5-dicarboxylato- κ2O3:O5)copper(II)] top
Crystal data top
[Cu(C9H8N2O4)2]F(000) = 924
Mr = 451.87Dx = 1.645 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 12587 reflections
a = 8.2003 (16) Åθ = 3.2–27.5°
b = 16.234 (3) ŵ = 1.25 mm1
c = 13.708 (3) ÅT = 291 K
V = 1824.9 (6) Å3Bluck, black
Z = 40.26 × 0.24 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2097 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.733, Tmax = 0.801k = 2121
16747 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.9342P]
where P = (Fo2 + 2Fc2)/3
2097 reflections(Δ/σ)max = 0.008
138 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C9H8N2O4)2]V = 1824.9 (6) Å3
Mr = 451.87Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.2003 (16) ŵ = 1.25 mm1
b = 16.234 (3) ÅT = 291 K
c = 13.708 (3) Å0.26 × 0.24 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2097 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1754 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.801Rint = 0.051
16747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.41 e Å3
2097 reflectionsΔρmin = 0.29 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1149 (2)0.35544 (11)0.53558 (13)0.0216 (4)
C20.1113 (2)0.33765 (12)0.43628 (14)0.0226 (4)
C30.1706 (3)0.39606 (12)0.37198 (13)0.0251 (4)
H10.16770.38490.30550.030*
C40.2345 (3)0.47081 (12)0.40328 (13)0.0225 (4)
C50.2407 (3)0.48643 (11)0.50282 (13)0.0211 (4)
C60.0406 (3)0.25909 (13)0.39516 (15)0.0269 (4)
C70.2938 (3)0.53108 (12)0.32739 (14)0.0257 (4)
C80.3043 (3)0.56351 (13)0.54895 (15)0.0300 (5)
H50.29410.55950.61860.045*
H60.24270.60990.52590.045*
H70.41700.57060.53200.045*
C90.0530 (3)0.30107 (14)0.61494 (15)0.0331 (5)
H20.10780.31420.67490.050*
H30.07360.24460.59840.050*
H40.06210.30940.62270.050*
Cu10.00000.148168 (18)0.25000.02018 (13)
H80.186 (3)0.4388 (17)0.621 (2)0.042 (8)*
N10.1800 (2)0.42800 (10)0.56291 (12)0.0225 (4)
O10.0813 (2)0.22887 (11)0.43090 (13)0.0466 (5)
O20.1169 (2)0.23282 (9)0.32017 (10)0.0333 (4)
O30.2050 (3)0.54134 (12)0.25578 (11)0.0442 (5)
O40.4295 (2)0.56494 (9)0.34300 (11)0.0337 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (10)0.0224 (9)0.0180 (9)0.0001 (8)0.0003 (7)0.0006 (7)
C20.0248 (10)0.0226 (9)0.0203 (9)0.0015 (8)0.0012 (7)0.0027 (7)
C30.0331 (11)0.0271 (10)0.0152 (8)0.0015 (8)0.0020 (7)0.0029 (7)
C40.0283 (10)0.0217 (9)0.0175 (8)0.0017 (8)0.0009 (7)0.0015 (7)
C50.0239 (10)0.0207 (9)0.0186 (9)0.0000 (8)0.0020 (7)0.0002 (7)
C60.0319 (11)0.0239 (10)0.0250 (10)0.0044 (8)0.0064 (8)0.0013 (8)
C70.0382 (12)0.0203 (9)0.0186 (9)0.0020 (9)0.0036 (8)0.0015 (7)
C80.0399 (12)0.0254 (10)0.0246 (10)0.0060 (9)0.0031 (8)0.0051 (8)
C90.0442 (13)0.0325 (11)0.0225 (10)0.0085 (10)0.0067 (9)0.0033 (8)
Cu10.0283 (2)0.01488 (19)0.01735 (19)0.0000.00329 (12)0.000
N10.0294 (9)0.0249 (8)0.0132 (7)0.0018 (7)0.0006 (6)0.0012 (6)
O10.0439 (11)0.0449 (10)0.0511 (10)0.0222 (9)0.0102 (9)0.0123 (8)
O20.0440 (9)0.0283 (7)0.0277 (7)0.0087 (7)0.0004 (7)0.0095 (6)
O30.0507 (11)0.0592 (12)0.0228 (8)0.0022 (9)0.0051 (7)0.0161 (7)
O40.0442 (10)0.0279 (8)0.0290 (8)0.0094 (7)0.0034 (7)0.0081 (6)
Geometric parameters (Å, º) top
C1—N11.346 (3)C7—O41.259 (3)
C1—C21.392 (3)C8—H50.9600
C1—C91.490 (3)C8—H60.9600
C2—C31.383 (3)C8—H70.9600
C2—C61.510 (3)C9—H20.9600
C3—C41.390 (3)C9—H30.9600
C3—H10.9300C9—H40.9600
C4—C51.389 (3)Cu1—O21.9322 (15)
C4—C71.509 (3)Cu1—O2i1.9322 (15)
C5—N11.351 (2)Cu1—O4ii1.9455 (15)
C5—C81.496 (3)Cu1—O4iii1.9455 (15)
C6—O11.216 (3)N1—H80.82 (3)
C6—O21.277 (3)O4—Cu1iv1.9455 (15)
C7—O31.234 (3)
N1—C1—C2117.53 (17)C5—C8—H6109.5
N1—C1—C9116.75 (17)H5—C8—H6109.5
C2—C1—C9125.72 (18)C5—C8—H7109.5
C3—C2—C1118.26 (17)H5—C8—H7109.5
C3—C2—C6118.44 (17)H6—C8—H7109.5
C1—C2—C6123.26 (17)C1—C9—H2109.5
C2—C3—C4122.31 (17)C1—C9—H3109.5
C2—C3—H1118.8H2—C9—H3109.5
C4—C3—H1118.8C1—C9—H4109.5
C5—C4—C3118.47 (17)H2—C9—H4109.5
C5—C4—C7123.17 (17)H3—C9—H4109.5
C3—C4—C7118.36 (17)O2—Cu1—O2i89.32 (10)
N1—C5—C4117.21 (17)O2—Cu1—O4ii165.38 (7)
N1—C5—C8117.25 (16)O2i—Cu1—O4ii91.17 (7)
C4—C5—C8125.51 (17)O2—Cu1—O4iii91.17 (7)
O1—C6—O2126.3 (2)O2i—Cu1—O4iii165.38 (7)
O1—C6—C2120.40 (19)O4ii—Cu1—O4iii92.03 (10)
O2—C6—C2113.20 (18)C1—N1—C5126.19 (16)
O3—C7—O4126.7 (2)C1—N1—H8119 (2)
O3—C7—C4116.5 (2)C5—N1—H8115 (2)
O4—C7—C4116.80 (18)C6—O2—Cu1113.26 (14)
C5—C8—H5109.5C7—O4—Cu1iv117.02 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···O3v0.82 (3)1.88 (3)2.698 (2)177 (3)
Symmetry code: (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H8N2O4)2]
Mr451.87
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)8.2003 (16), 16.234 (3), 13.708 (3)
V3)1824.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.26 × 0.24 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.733, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
16747, 2097, 1754
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.09
No. of reflections2097
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···O3i0.82 (3)1.88 (3)2.698 (2)177 (3)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The authors thank the Project of the Science and Technology Foundation of Heilongjiang Provincial Education Department (grant No. 11523041) and Heilongjiang East College for supporting this study.

References

First citationChecchi, S. (1959). Gazz. Chim. Ital. 89, 2151–2162.  CAS Google Scholar
First citationGao, J.-S., Zhang, Y.-M., Li, B.-Y. & Hou, G.-F. (2007). Acta Cryst. E63, m2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, A.-E., Li, B.-Y., Hou, G.-F. & Gao, J.-S. (2007). Acta Cryst. E63, m471–m473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, Q.-Q., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2000). CrystEngComm, 2, 73–76.  Web of Science CSD CrossRef Google Scholar
First citationZeng, Q.-Q., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174–5186.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds