organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium 1-ammonio­ethane-1,1-diylbis(hydrogenphospho­nate) dihydrate

aV. I. Vernadskii Institute of General and Inorganic Chemistry, Kyiv 03680, Ukraine
*Correspondence e-mail: bon@ionc.kiev.ua

(Received 6 November 2008; accepted 10 November 2008; online 13 November 2008)

The title compound, NH4+·C2H8NO6P2·2H2O, was obtained by the reaction between 1-amino­ethane-1,1-diyldiphospho­nic acid and ammonium hydroxide (1:1) in an aqueous solution. The asymmetric unit contains one anion with two H atoms transferred from the phospho­nic acid groups to the amino group of the anion and to an ammonia mol­ecule, giving an ammonium cation. The structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphospho­nic acids are efficient drugs for the prevention of calcification and the inhibition bone resorption (Tromelin et al., 1986[Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301-312.], Matczak-Jon & Videnova-Adrabinska, 2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]) and are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For related structures, see: Bruckmann et al. (1999[Bruckmann, J., Krüger, C., Lehmann, C. W., Leitner, W., Rust, J. & Six, C. (1999). Acta Cryst. C55, 695-696.]); Olive et al. (2000[Olive, G., Ellis, D. D., Siri, D., Le Moigne, F., Lutz, M., Spek, A. L., Tordo, P. & Reboul, J.-P. (2000). Acta Cryst. C56, 720-722.]); Coiro et al. (1989[Coiro, V. M. & Lamba, D. (1989). Acta Cryst. C45, 446-448.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C2H8NO6P2·2H2O

  • Mr = 258.11

  • Monoclinic, P 21 /c

  • a = 8.8922 (3) Å

  • b = 6.9390 (3) Å

  • c = 18.9576 (8) Å

  • β = 117.957 (2)°

  • V = 1033.23 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 173 (2) K

  • 0.23 × 0.19 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.963

  • 14152 measured reflections

  • 2126 independent reflections

  • 1710 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.05

  • 2126 reflections

  • 180 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.78 (3) 1.74 (3) 2.523 (2) 179 (3)
O6—H6O⋯O5ii 0.81 (3) 1.71 (3) 2.526 (2) 175 (3)
N1—H11N⋯O2iii 0.94 (3) 1.83 (3) 2.759 (2) 169 (2)
N1—H12N⋯O8i 0.90 (3) 2.00 (3) 2.873 (3) 164 (2)
N1—H13N⋯O3i 0.87 (3) 2.08 (3) 2.928 (2) 167 (2)
N2—H21N⋯O7 0.88 (3) 2.00 (3) 2.860 (3) 165 (3)
N2—H22N⋯O2iv 0.85 (3) 2.14 (3) 2.914 (3) 151 (2)
N2—H23N⋯O1 0.93 (3) 1.91 (3) 2.832 (3) 171 (3)
N2—H24N⋯O1v 0.90 (2) 1.97 (3) 2.850 (3) 165 (2)
O7—H71O⋯O8 0.83 (3) 1.99 (3) 2.817 (3) 177 (3)
O7—H72O⋯O5vi 0.80 (3) 1.97 (3) 2.745 (2) 165 (3)
O8—H81O⋯O1vii 0.768 (17) 2.244 (19) 2.984 (2) 162 (3)
O8—H82O⋯O7viii 0.775 (18) 1.999 (19) 2.770 (3) 173 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) -x+1, -y+1, -z+2; (vi) x-1, y, z; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The asymmetric unit of title compound (Fig. 1) contains one molecule, which exists as anion with two protons transferred from the phosphonic group to the amino group and from another phosphonic group to ammonium cation. In the crystal structure of the title compound the phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom (Bruckmann et al. (1999); Olive et al. (2000); Coiro et al. (1989)). Bond lengths and angles have normal values (Allen et al., 1987). One ammonium cation and two solvent water molecules are present in asymetric unit. The structure is stabilized by three-dimensional O–H···O and N–H···O hydrogen bonds network (Table 1, Fig.2).

Related literature top

Diphosphonic acids are efficient drugs for the prevention of calcification and the inhibition bone resorption (Tromelin et al., 1986, Matczak-Jon & Videnova-Adrabinska, 2005) and are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). For related structures, see: Bruckmann et al. (1999); Olive et al. (2000); Coiro et al. (1989). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained by the reaction of 1-aminoethane-1,1-diyldiphosphonic acid and ammonium hydroxide (1:1) in the aqueous solution. The solution was left at room temperature. Colourless crystals of the title compound were obtained after 1 day staying.

Refinement top

All H atoms bonded to O and N atoms were located in a difference map. Other H atoms bonded to C were positioned geometrically and refined using a riding model with C–H = 0.98 Å for CH3 with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme. The displacement ellipsoids are shown at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of title compound, projection along b axis. Dashed lines indicate hydrogen bonds.
Ammonium 1-ammonioethane-1,1-diylbis(hydrogenphosphonate) dihydtare top
Crystal data top
H4N+·C2H8NO6P2·2H2OF(000) = 544
Mr = 258.11Dx = 1.659 Mg m3
Monoclinic, P21/cMelting point: 511 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8922 (3) ÅCell parameters from 4102 reflections
b = 6.9390 (3) Åθ = 2.4–26.4°
c = 18.9576 (8) ŵ = 0.45 mm1
β = 117.957 (2)°T = 173 K
V = 1033.23 (7) Å3Needle, colourless
Z = 40.23 × 0.19 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2126 independent reflections
Radiation source: Fine-focus sealed tube1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.906, Tmax = 0.963k = 88
14152 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: Geom
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.4969P]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.50 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
H4N+·C2H8NO6P2·2H2OV = 1033.23 (7) Å3
Mr = 258.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8922 (3) ŵ = 0.45 mm1
b = 6.9390 (3) ÅT = 173 K
c = 18.9576 (8) Å0.23 × 0.19 × 0.09 mm
β = 117.957 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1710 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.963Rint = 0.057
14152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
2126 reflectionsΔρmin = 0.42 e Å3
180 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.45684 (7)0.78215 (7)0.83905 (3)0.00967 (14)
P20.75545 (7)0.49061 (7)0.90274 (3)0.00998 (14)
C10.6842 (3)0.7385 (3)0.86839 (12)0.0102 (4)
C20.7977 (3)0.8851 (3)0.93146 (13)0.0151 (5)
H2A0.91720.86040.94600.023*
H2B0.78160.87300.97900.023*
H2C0.76681.01570.90970.023*
N10.7091 (2)0.7652 (3)0.79539 (11)0.0110 (4)
N20.4118 (3)0.2940 (3)0.92879 (12)0.0156 (4)
O10.41873 (18)0.6941 (2)0.90108 (8)0.0136 (3)
O20.42601 (18)0.99358 (19)0.82470 (8)0.0138 (3)
O30.35764 (18)0.6661 (2)0.75879 (9)0.0118 (3)
O40.61946 (17)0.3541 (2)0.84970 (8)0.0127 (3)
O50.92422 (18)0.4672 (2)0.90282 (8)0.0137 (3)
O60.7742 (2)0.4803 (2)0.98869 (9)0.0142 (3)
H3O0.366 (3)0.724 (4)0.7255 (16)0.033 (8)*
H6O0.873 (4)0.492 (4)1.0228 (18)0.044 (9)*
H11N0.653 (3)0.669 (4)0.7568 (15)0.022 (6)*
H12N0.822 (3)0.761 (3)0.8110 (14)0.016 (6)*
H13N0.672 (3)0.878 (4)0.7751 (14)0.019 (7)*
H21N0.303 (4)0.265 (4)0.9075 (17)0.036 (8)*
H22N0.453 (3)0.222 (4)0.9061 (16)0.028 (8)*
H23N0.418 (3)0.422 (5)0.9160 (17)0.039 (8)*
H24N0.463 (3)0.275 (3)0.9819 (15)0.013 (6)*
O70.0562 (2)0.2189 (3)0.83327 (12)0.0225 (4)
O80.0558 (2)0.3200 (3)0.67241 (11)0.0235 (4)
H71O0.019 (4)0.249 (4)0.786 (2)0.042 (9)*
H72O0.004 (3)0.278 (4)0.8504 (16)0.025 (8)*
H81O0.145 (3)0.279 (4)0.6455 (15)0.034 (9)*
H82O0.064 (4)0.431 (3)0.668 (2)0.063 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0092 (3)0.0081 (3)0.0112 (3)0.0005 (2)0.0044 (2)0.0006 (2)
P20.0099 (3)0.0091 (3)0.0099 (3)0.0006 (2)0.0038 (2)0.0007 (2)
C10.0101 (10)0.0095 (10)0.0110 (10)0.0006 (8)0.0049 (8)0.0002 (8)
C20.0152 (11)0.0123 (11)0.0167 (11)0.0028 (9)0.0065 (9)0.0034 (9)
N10.0104 (10)0.0097 (9)0.0125 (9)0.0006 (8)0.0051 (8)0.0019 (8)
N20.0169 (11)0.0169 (11)0.0144 (11)0.0005 (9)0.0084 (9)0.0014 (8)
O10.0138 (8)0.0141 (8)0.0144 (8)0.0004 (6)0.0078 (6)0.0025 (6)
O20.0155 (8)0.0104 (7)0.0152 (7)0.0010 (6)0.0069 (6)0.0004 (6)
O30.0130 (8)0.0103 (7)0.0108 (7)0.0015 (6)0.0044 (6)0.0010 (6)
O40.0131 (8)0.0100 (7)0.0142 (7)0.0009 (6)0.0058 (6)0.0007 (6)
O50.0117 (8)0.0144 (8)0.0141 (7)0.0018 (6)0.0052 (6)0.0001 (6)
O60.0107 (8)0.0194 (8)0.0114 (7)0.0008 (6)0.0042 (7)0.0014 (6)
O70.0173 (9)0.0237 (9)0.0262 (10)0.0030 (7)0.0100 (8)0.0056 (8)
O80.0164 (10)0.0216 (10)0.0324 (10)0.0009 (8)0.0115 (9)0.0013 (8)
Geometric parameters (Å, º) top
P1—O21.4939 (14)N1—H11N0.94 (3)
P1—O11.4982 (14)N1—H12N0.90 (3)
P1—O31.5760 (15)N1—H13N0.87 (3)
P1—C11.853 (2)N2—H21N0.88 (3)
P2—O41.4933 (15)N2—H22N0.85 (3)
P2—O51.5088 (15)N2—H23N0.93 (3)
P2—O61.5598 (15)N2—H24N0.90 (2)
P2—C11.843 (2)O3—H3O0.78 (3)
C1—N11.512 (3)O6—H6O0.81 (3)
C1—C21.534 (3)O7—H71O0.83 (3)
C2—H2A0.9800O7—H72O0.80 (3)
C2—H2B0.9800O8—H81O0.768 (17)
C2—H2C0.9800O8—H82O0.775 (18)
O2—P1—O1116.99 (8)H2A—C2—H2B109.5
O2—P1—O3110.75 (8)C1—C2—H2C109.5
O1—P1—O3108.61 (9)H2A—C2—H2C109.5
O2—P1—C1107.25 (9)H2B—C2—H2C109.5
O1—P1—C1108.31 (9)C1—N1—H11N111.7 (15)
O3—P1—C1104.13 (9)C1—N1—H12N108.2 (15)
O4—P2—O5115.05 (8)H11N—N1—H12N110 (2)
O4—P2—O6109.31 (8)C1—N1—H13N109.0 (15)
O5—P2—O6112.01 (8)H11N—N1—H13N110 (2)
O4—P2—C1108.55 (9)H12N—N1—H13N108 (2)
O5—P2—C1106.13 (9)H21N—N2—H22N106 (3)
O6—P2—C1105.23 (9)H21N—N2—H23N107 (2)
N1—C1—C2107.87 (16)H22N—N2—H23N110 (3)
N1—C1—P2105.33 (13)H21N—N2—H24N110 (2)
C2—C1—P2110.63 (14)H22N—N2—H24N112 (2)
N1—C1—P1108.22 (14)H23N—N2—H24N112 (2)
C2—C1—P1110.60 (14)P1—O3—H3O107 (2)
P2—C1—P1113.86 (10)P2—O6—H6O112 (2)
C1—C2—H2A109.5H71O—O7—H72O108 (3)
C1—C2—H2B109.5H81O—O8—H82O106 (3)
O4—P2—C1—N177.19 (14)O2—P1—C1—N171.57 (14)
O5—P2—C1—N147.00 (15)O1—P1—C1—N1161.33 (13)
O6—P2—C1—N1165.88 (13)O3—P1—C1—N145.86 (15)
O4—P2—C1—C2166.50 (13)O2—P1—C1—C246.40 (16)
O5—P2—C1—C269.31 (15)O1—P1—C1—C280.71 (15)
O6—P2—C1—C249.58 (16)O3—P1—C1—C2163.82 (14)
O4—P2—C1—P141.22 (13)O2—P1—C1—P2171.69 (10)
O5—P2—C1—P1165.41 (10)O1—P1—C1—P244.58 (13)
O6—P2—C1—P175.71 (12)O3—P1—C1—P270.88 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.78 (3)1.74 (3)2.523 (2)179 (3)
O6—H6O···O5ii0.81 (3)1.71 (3)2.526 (2)175 (3)
N1—H11N···O2iii0.94 (3)1.83 (3)2.759 (2)169 (2)
N1—H12N···O8i0.90 (3)2.00 (3)2.873 (3)164 (2)
N1—H13N···O3i0.87 (3)2.08 (3)2.928 (2)167 (2)
N2—H21N···O70.88 (3)2.00 (3)2.860 (3)165 (3)
N2—H22N···O2iv0.85 (3)2.14 (3)2.914 (3)151 (2)
N2—H23N···O10.93 (3)1.91 (3)2.832 (3)171 (3)
N2—H24N···O1v0.90 (2)1.97 (3)2.850 (3)165 (2)
O7—H71O···O80.83 (3)1.99 (3)2.817 (3)177 (3)
O7—H72O···O5vi0.80 (3)1.97 (3)2.745 (2)165 (3)
O8—H81O···O1vii0.77 (2)2.24 (2)2.984 (2)162 (3)
O8—H82O···O7viii0.78 (2)2.00 (2)2.770 (3)173 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+3/2; (iv) x, y1, z; (v) x+1, y+1, z+2; (vi) x1, y, z; (vii) x, y1/2, z+3/2; (viii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaH4N+·C2H8NO6P2·2H2O
Mr258.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.8922 (3), 6.9390 (3), 18.9576 (8)
β (°) 117.957 (2)
V3)1033.23 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.23 × 0.19 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.906, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
14152, 2126, 1710
Rint0.057
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.06
No. of reflections2126
No. of parameters180
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.78 (3)1.74 (3)2.523 (2)179 (3)
O6—H6O···O5ii0.81 (3)1.71 (3)2.526 (2)175 (3)
N1—H11N···O2iii0.94 (3)1.83 (3)2.759 (2)169 (2)
N1—H12N···O8i0.90 (3)2.00 (3)2.873 (3)164 (2)
N1—H13N···O3i0.87 (3)2.08 (3)2.928 (2)167 (2)
N2—H21N···O70.88 (3)2.00 (3)2.860 (3)165 (3)
N2—H22N···O2iv0.85 (3)2.14 (3)2.914 (3)151 (2)
N2—H23N···O10.93 (3)1.91 (3)2.832 (3)171 (3)
N2—H24N···O1v0.90 (2)1.97 (3)2.850 (3)165 (2)
O7—H71O···O80.83 (3)1.99 (3)2.817 (3)177 (3)
O7—H72O···O5vi0.80 (3)1.97 (3)2.745 (2)165 (3)
O8—H81O···O1vii0.768 (17)2.244 (19)2.984 (2)162 (3)
O8—H82O···O7viii0.775 (18)1.999 (19)2.770 (3)173 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+3/2; (iv) x, y1, z; (v) x+1, y+1, z+2; (vi) x1, y, z; (vii) x, y1/2, z+3/2; (viii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors offer special thanks to Dr E. B. Rusanov for his help with the article preparation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruckmann, J., Krüger, C., Lehmann, C. W., Leitner, W., Rust, J. & Six, C. (1999). Acta Cryst. C55, 695–696.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoiro, V. M. & Lamba, D. (1989). Acta Cryst. C45, 446–448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationOlive, G., Ellis, D. D., Siri, D., Le Moigne, F., Lutz, M., Spek, A. L., Tordo, P. & Reboul, J.-P. (2000). Acta Cryst. C56, 720–722.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds