metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1507-m1508

(Croconato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)zinc(II)

aSchool of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
*Correspondence e-mail: binboll@126.com

(Received 5 August 2008; accepted 15 October 2008; online 8 November 2008)

In the title compound, [Zn(C5O5)(C12H8N2)2], the Zn atom is in a slightly distorted octa­hedral environment. The mol­ecule lies across a twofold rotation axis, around which two 1,10-phenanthroline ligands are arranged. There are short contacts between the 1,10-phenanthroline groups and the O atoms of the croconate ligand, which probably stabilize the crystal structure via weak C—H⋯O interactions.

Related literature

For related literature, see: Braga et al. (2002[Braga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J. 8, 1804-1812.]); Carranza et al. (2004[Carranza, J., Sletten, J., Brennan, C., Lloret, F., Cano, J. & Julve, M. (2004). Dalton Trans. p. 3997-4000.]); Castro et al. (1992[Castro, I., Sletten, J., Faus, J., Julve, M., Journaux, Y., Lloret, F. & Alvarez, S. (1992). Inorg. Chem. 31, 1889-1894.], 2002[Castro, I., Calatayud, M. L., Lloret, F., Sletten, J. & Julve, M. (2002). J. Chem. Soc. Dalton Trans. pp. 2397-2403.]); Chen et al. (2005[Chen, H.-Y., Fang, Q., Xue, G. & Yu, W.-T. (2005). Acta Cryst. C61, m535-m537.], 2007[Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166-m168.], 2008[Chen, H.-F., Chen, H.-Y., Chen, X., Batsanov, A. S. & Fang, Q. (2008). Acta Cryst. E64, m172.]); Faus et al. (1994[Faus, J., Julve, M., Lloret, F., Real, J. A. & Sletten, J. (1994). Inorg. Chem. 33, 5535-5540.]); Maji et al. (2003[Maji, T. K., Konar, S., Mostafa, G., Zangrando, E., Lu, T. H. & Chaudhuri, N. R. (2003). J. Chem. Soc. Dalton Trans. pp. 171-175.]); Seitz & Imming (1992[Seitz, G. & Imming, P. (1992). Chem. Rev. 92, 1227-1260.]); Sletten et al. (1998[Sletten, J., Daraghmeh, H., Lloret, F. & Julve, M. (1998). Inorg. Chim. Acta, 279, 127-135.]); Wang et al. (2002[Wang, C.-C., Yang, C.-H. & Lee, G.-H. (2002). Inorg. Chem. 41, 1015-1018.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5O5)(C12H8N2)2]

  • Mr = 565.83

  • Orthorhombic, P b c n

  • a = 12.2605 (4) Å

  • b = 11.0133 (3) Å

  • c = 17.2745 (5) Å

  • V = 2332.55 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 (2) K

  • 0.28 × 0.23 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.782 (expected range = 0.805–0.847)

  • 9769 measured reflections

  • 2627 independent reflections

  • 2164 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.096

  • S = 1.28

  • 2627 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

N1—Zn1 2.1493 (15)
N2—Zn1 2.1664 (17)
O1—Zn1 2.1325 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.47 3.295 (2) 149
C11—H11⋯O3ii 0.93 2.55 3.147 (2) 122
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The dianion of croconic acid(4,5-dihydroxycyclopent-4-ene-1,2,3-trione), (C5O5)2-, is one of the cyclic aromatic oxocarbons (CO)n2- characterized by extensive delocalization of the π electrons all over the ring (Seitz & Imming, 1992). Previous reports reveal that croconate is a polydent ligand(Chen et al., 2005, Maji et al., 2003, Wang et al., 2002, Sletten et al., 1998). According to the concept of 'molecular self-organization' and 'molecular engineering', transition metal croconates associated with another ligand such as terpyridine (Castro et al. 2002), bis((bis(2-pyridylcarbonyl) amido (Maji et al., 2003), 2,2'-bipyridine (Castro et al., 1992) or the tetrakis(2-pyridyl)pyrazine (Carranza et al. 2004) show interesting properties in magnetism, biochemistry, catalyst et al.

1,10-Phenanthroline(phen) is a well known neutral bidentate ligand. There have been considerable interests in the synthesis of open-framework phen-based metal complexes because of their interesting structure chemistry and potential applications(Faus et al. 1994). Recently, many research activities have focused on the synthesis of hybrid framework by incorporate organic ligand in the structure of phen-based complexes. Among the family of cyclic oxocarbons of the formula (CO)n2- [n=2–6 for oxalate, deltate, squarate, croconate and rhodizonate anions, respectively], the croconate moiety, (C5O5)2-, was found to be a good candidate and has been successfully incorporated into phen-based frameworks in our previous work, [M(phen)2(C5O5)] (M= Cu, Ni, Co, Mn) (Chen et al., 2005, 2007, 2008). Here, we report a new member of this family: [Zn(phen)2(C5O5)].

In the title structure, asymmetry unit contains a phen moiety and half a coroconte group coordinated with a zinc ion. The title compound lies across twofold rotation axes which passes through the Zn atom and bisects the croconate ligand, around which two phen ligand are arranged in a chiral propeller manner. A unit cell contains four [Zn(phen)2(C5O5)] molecules.

As a good π-conjugation system, the croconate dianion('free' ligand) in its simple salt has a plannar D5 h conformation with five almost identical C?O bonds and five almost identical C?C bonds, such as in Rb2C5O5 and Cs2C5O5 crystals (Braga et al., 2002). However, the coordinated ligand in title complex obvioulsy deviates from D5 h symmetry. The C?O bond involving coordinated O atoms is longer than that involving the uncoordinated O atoms. In the title complex, the C?O bond lengths are 1.229 (3) Å and 1.228 (4) Å for the uncoordinated O atoms and 1.277 (2) Å for the coordinated O atoms.

The molecuar conformation of [Zn(phen)2(C5O5)] is close to [Co(phen)2(C5O5)] and [Ni(phen)2(C5O5)] while different from [Cu(phen)2(C5O5)] and [Mn(phen)2(C5O5)]. The dihedral angle between the two phen planes for the title compound is 85.3 (1)° and the croconate and phen planes are also effectively perpendicular, with a dihedral angle of 87.7 (1)°. Compared with our previous reported result(Chen et al. 2005, 2007, 2008), the crystal growth method not only influence crystal packing motif, but also have effect on the moleular configuration. The crystal of [Zn(phen)2(C5O5)], [Co(phen)2(C5O5)] and [Ni(phen)2(C5O5)] are grown by hydrothermal method while the cyrstal of [Cu(phen)2(C5O5)] and [Mn(phen)2(C5O5)] are obtained by solvent evaporation under room temperature. Correspondingly, the crystal packing motif for crystal of Ni, Co, and Zn complexes are Pbcn, while it is C2/c for Cu and Mn complexes. As for the molecular configuration, the dihendral angles between the two phen planes for the complexes of Zn, Co, Ni are 87.7 (1)°, 85.7 (1)°, 86.0 (1)° which are almost perpendicular to each other, but they are 46.5 (1)° and 40.7 (1)° for Cu and Mn complexes.

According to the Jahn-teller effect theotry (if a d-orbital of a transiton metal ion is empty or full-filled and the other equivalent orbital is half full-filled, the coordinate enviorment of the transition metal ion will be distorted to form a more stable configuration), Cu2+ and Mn2+ have a strong tendency to Jahn-teller distortion while Zn2+ and Ni2+ are not. So, the local polyhedral MN4O2(M=Zn, Co, Ni) in their complexes are close to the octahedral while MN4O2(M=Mn, Cui) in their complexes are severely distorted from the octahedral. In the tiltle comound, the values of the angles subtended by the bidentate at zinc atom [77.37 (6)°] deviate significantly from the ideal vaue of 90° due to the small bite size of the five-memberbered plannar chelate rings.

As shown in Fig.2, the dipole moments of [Zn(phen)2(C5O5)] are arranged alternatively along +b and-b directions. There are short contacts between the phen groups and the O atoms of the croconate [e.g. C(6)—H(6)···O(1) (x, -y, -1/2 + z) and C(11)—H(11)···O(3)(-1/2 + x, -1/2 + y, 3/2 - z), which probably stablize the crystal structure.

Related literature top

For related literature, see: Braga et al. (2002); Carranza et al. (2004); Castro et al. (1992, 2002); Chen et al. (2005, 2007, 2008); Faus et al. (1994); Maji et al. (2003); Seitz & Imming (1992); Sletten et al. (1998); Wang et al. (2002). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

[K2(C5O5)](0.10 g) and Zn(CH3COO)2.2H2O (0.10 g) were dissolved in solvent of water 15 ml. The mixture was heated to 340–350 K under continuous stirring for 20 min. To the resulting yellow solution, an ethanol solution (10 ml) of 1,10-phenanthroline (0.1 mol/L) was added to cause an immediate precipation of yellow microcrystal. After the solutions were left to stand at room temperature for 30 minutes, they were collected by filter suction, washed with water. Then the obtained precipation and 15 ml water was placed in the teflon liner of an autoclave, which was sealed and heated to 433 K for 48 h, cooled at speed of 10 K/min, whereupon yellow block of [Zn(phen)2(C5O5)] were obtained.

Refinement top

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which C—H = 0.93 Å and Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure with thermal ellipsoids at 30% probability levels. [symmetry code: -x + 1/2, y, -z + 3/2]
[Figure 2] Fig. 2. A packing diagram of the title compound.
(Croconato-κ2O,O')bis(1,10-phenanthroline- κ2N,N')zinc(II) top
Crystal data top
[Zn(C5O5)(C12H8N2)2]F(000) = 1152
Mr = 565.83Dx = 1.611 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3967 reflections
a = 12.2605 (4) Åθ = 2.8–27.5°
b = 11.0133 (3) ŵ = 1.11 mm1
c = 17.2745 (5) ÅT = 293 K
V = 2332.55 (12) Å3Prism, yellow
Z = 40.28 × 0.23 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2627 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.4°
ϕ and ω scansh = 1514
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
k = 1413
Tmin = 0.743, Tmax = 0.782l = 2121
9769 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.6435P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max < 0.001
2627 reflectionsΔρmax = 0.29 e Å3
179 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
[Zn(C5O5)(C12H8N2)2]V = 2332.55 (12) Å3
Mr = 565.83Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.2605 (4) ŵ = 1.11 mm1
b = 11.0133 (3) ÅT = 293 K
c = 17.2745 (5) Å0.28 × 0.23 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2627 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2164 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.782Rint = 0.019
9769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.28Δρmax = 0.29 e Å3
2627 reflectionsΔρmin = 0.32 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.14583 (16)0.08987 (18)0.66696 (12)0.0370 (4)
H11.19770.07250.70470.044*
C21.17077 (19)0.1768 (2)0.61125 (13)0.0442 (5)
H21.23740.21710.61230.053*
C31.09642 (18)0.20164 (18)0.55543 (12)0.0411 (5)
H31.11210.25980.51800.049*
C40.99594 (16)0.14043 (18)0.55356 (12)0.0346 (4)
C50.97663 (15)0.05585 (16)0.61341 (10)0.0284 (4)
C60.91524 (18)0.15647 (19)0.49514 (12)0.0406 (5)
H60.92820.21100.45510.049*
C70.82034 (19)0.09419 (19)0.49667 (13)0.0434 (5)
H70.77000.10510.45700.052*
C80.79598 (16)0.01181 (19)0.55831 (11)0.0371 (4)
C90.87469 (15)0.00774 (16)0.61615 (11)0.0305 (4)
C100.69824 (18)0.0534 (2)0.56380 (14)0.0503 (6)
H100.64430.04380.52640.060*
C110.68264 (19)0.1309 (2)0.62399 (15)0.0535 (6)
H110.61770.17400.62810.064*
C120.76426 (18)0.1457 (2)0.67964 (13)0.0460 (5)
H120.75220.19850.72080.055*
C130.96697 (16)0.35065 (18)0.78378 (11)0.0334 (4)
C140.94811 (17)0.47521 (18)0.80990 (13)0.0409 (5)
C151.00000.5549 (3)0.75000.0419 (7)
N11.05186 (12)0.03074 (13)0.66885 (9)0.0290 (3)
N20.85892 (13)0.08653 (15)0.67547 (9)0.0352 (4)
O10.93325 (12)0.25245 (13)0.81491 (8)0.0415 (3)
O20.89952 (16)0.50881 (16)0.86832 (11)0.0659 (5)
O31.00000.6664 (2)0.75000.0560 (7)
Zn11.00000.10546 (3)0.75000.03197 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (10)0.0405 (11)0.0355 (11)0.0036 (8)0.0035 (8)0.0000 (8)
C20.0441 (11)0.0421 (11)0.0465 (13)0.0118 (9)0.0055 (10)0.0014 (9)
C30.0551 (13)0.0326 (10)0.0356 (11)0.0030 (9)0.0093 (9)0.0061 (9)
C40.0457 (11)0.0278 (8)0.0302 (10)0.0086 (8)0.0057 (8)0.0008 (8)
C50.0348 (9)0.0270 (9)0.0235 (9)0.0044 (7)0.0003 (7)0.0029 (7)
C60.0579 (13)0.0387 (11)0.0253 (10)0.0166 (10)0.0015 (9)0.0029 (8)
C70.0504 (12)0.0458 (12)0.0340 (12)0.0204 (10)0.0078 (9)0.0041 (9)
C80.0347 (9)0.0427 (11)0.0340 (11)0.0090 (8)0.0040 (8)0.0107 (8)
C90.0325 (9)0.0317 (9)0.0275 (10)0.0034 (7)0.0032 (7)0.0062 (7)
C100.0369 (11)0.0632 (15)0.0507 (14)0.0041 (10)0.0093 (10)0.0208 (12)
C110.0378 (11)0.0656 (15)0.0572 (15)0.0163 (11)0.0031 (10)0.0239 (13)
C120.0486 (12)0.0514 (13)0.0380 (12)0.0166 (10)0.0035 (9)0.0067 (10)
C130.0377 (9)0.0342 (10)0.0283 (10)0.0010 (8)0.0009 (8)0.0019 (8)
C140.0403 (11)0.0357 (10)0.0468 (13)0.0004 (9)0.0011 (9)0.0078 (9)
C150.0364 (14)0.0334 (15)0.056 (2)0.0000.0102 (13)0.000
N10.0323 (8)0.0298 (8)0.0250 (8)0.0014 (6)0.0021 (6)0.0004 (6)
N20.0361 (8)0.0388 (9)0.0307 (9)0.0075 (7)0.0039 (7)0.0040 (7)
O10.0567 (9)0.0360 (7)0.0320 (8)0.0025 (6)0.0138 (6)0.0001 (6)
O20.0795 (12)0.0528 (10)0.0653 (12)0.0019 (9)0.0307 (10)0.0207 (9)
O30.0662 (16)0.0286 (11)0.0731 (18)0.0000.0109 (12)0.000
Zn10.0409 (2)0.03008 (19)0.0249 (2)0.0000.00062 (12)0.000
Geometric parameters (Å, º) top
C1—N11.324 (2)C10—H100.9300
C1—C21.391 (3)C11—C121.397 (3)
C1—H10.9300C11—H110.9300
C2—C31.355 (3)C12—N21.333 (3)
C2—H20.9300C12—H120.9300
C3—C41.405 (3)C13—O11.277 (2)
C3—H30.9300C13—C13i1.420 (4)
C4—C51.412 (3)C13—C141.462 (3)
C4—C61.424 (3)C14—O21.229 (3)
C5—N11.358 (2)C14—C151.498 (3)
C5—C91.433 (3)C15—O31.229 (4)
C6—C71.351 (3)C15—C14i1.498 (3)
C6—H60.9300N1—Zn12.1493 (15)
C7—C81.430 (3)N2—Zn12.1664 (17)
C7—H70.9300O1—Zn12.1325 (14)
C8—C101.400 (3)Zn1—O1i2.1325 (14)
C8—C91.406 (3)Zn1—N1i2.1493 (15)
C9—N21.357 (2)Zn1—N2i2.1664 (17)
C10—C111.359 (4)
N1—C1—C2123.14 (19)N2—C12—H12119.0
N1—C1—H1118.4C11—C12—H12119.0
C2—C1—H1118.4O1—C13—C13i122.05 (11)
C3—C2—C1118.91 (19)O1—C13—C14127.84 (18)
C3—C2—H2120.5C13i—C13—C14110.10 (12)
C1—C2—H2120.5O2—C14—C13127.8 (2)
C2—C3—C4120.63 (19)O2—C14—C15126.6 (2)
C2—C3—H3119.7C13—C14—C15105.61 (19)
C4—C3—H3119.7O3—C15—C14i125.84 (13)
C3—C4—C5116.54 (18)O3—C15—C14125.84 (13)
C3—C4—C6124.48 (19)C14i—C15—C14108.3 (3)
C5—C4—C6118.96 (18)C1—N1—C5118.26 (17)
N1—C5—C4122.48 (17)C1—N1—Zn1128.09 (13)
N1—C5—C9118.00 (17)C5—N1—Zn1113.65 (12)
C4—C5—C9119.52 (17)C12—N2—C9118.54 (18)
C7—C6—C4121.43 (19)C12—N2—Zn1128.01 (15)
C7—C6—H6119.3C9—N2—Zn1113.37 (12)
C4—C6—H6119.3C13—O1—Zn1107.30 (12)
C6—C7—C8121.09 (19)O1—Zn1—O1i81.23 (7)
C6—C7—H7119.5O1—Zn1—N1170.49 (6)
C8—C7—H7119.5O1i—Zn1—N194.20 (5)
C10—C8—C9117.4 (2)O1—Zn1—N1i94.20 (5)
C10—C8—C7123.7 (2)O1i—Zn1—N1i170.49 (6)
C9—C8—C7118.88 (19)N1—Zn1—N1i91.48 (8)
N2—C9—C8122.48 (18)O1—Zn1—N294.54 (6)
N2—C9—C5117.50 (17)O1i—Zn1—N293.84 (6)
C8—C9—C5120.02 (18)N1—Zn1—N277.37 (6)
C11—C10—C8119.6 (2)N1i—Zn1—N294.83 (6)
C11—C10—H10120.2O1—Zn1—N2i93.84 (6)
C8—C10—H10120.2O1i—Zn1—N2i94.54 (6)
C10—C11—C12119.9 (2)N1—Zn1—N2i94.83 (6)
C10—C11—H11120.0N1i—Zn1—N2i77.37 (6)
C12—C11—H11120.0N2—Zn1—N2i168.95 (9)
N2—C12—C11121.9 (2)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1ii0.932.473.295 (2)149
C11—H11···O3iii0.932.553.147 (2)122
Symmetry codes: (ii) x, y, z1/2; (iii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C5O5)(C12H8N2)2]
Mr565.83
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)12.2605 (4), 11.0133 (3), 17.2745 (5)
V3)2332.55 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.28 × 0.23 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.743, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
9769, 2627, 2164
Rint0.019
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.096, 1.28
No. of reflections2627
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—Zn12.1493 (15)O1—Zn12.1325 (14)
N2—Zn12.1664 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.473.295 (2)149
C11—H11···O3ii0.932.553.147 (2)122
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 50673054).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J. 8, 1804–1812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Sletten, J., Brennan, C., Lloret, F., Cano, J. & Julve, M. (2004). Dalton Trans. p. 3997–4000.  CrossRef Google Scholar
First citationCastro, I., Calatayud, M. L., Lloret, F., Sletten, J. & Julve, M. (2002). J. Chem. Soc. Dalton Trans. pp. 2397–2403.  Web of Science CSD CrossRef Google Scholar
First citationCastro, I., Sletten, J., Faus, J., Julve, M., Journaux, Y., Lloret, F. & Alvarez, S. (1992). Inorg. Chem. 31, 1889–1894.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, H.-F., Chen, H.-Y., Chen, X., Batsanov, A. S. & Fang, Q. (2008). Acta Cryst. E64, m172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166–m168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H.-Y., Fang, Q., Xue, G. & Yu, W.-T. (2005). Acta Cryst. C61, m535–m537.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFaus, J., Julve, M., Lloret, F., Real, J. A. & Sletten, J. (1994). Inorg. Chem. 33, 5535–5540.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaji, T. K., Konar, S., Mostafa, G., Zangrando, E., Lu, T. H. & Chaudhuri, N. R. (2003). J. Chem. Soc. Dalton Trans. pp. 171–175.  CSD CrossRef Google Scholar
First citationSeitz, G. & Imming, P. (1992). Chem. Rev. 92, 1227–1260.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSletten, J., Daraghmeh, H., Lloret, F. & Julve, M. (1998). Inorg. Chim. Acta, 279, 127–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-C., Yang, C.-H. & Lee, G.-H. (2002). Inorg. Chem. 41, 1015–1018.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1507-m1508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds