organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­phenyl)(2-hy­droxy-7-methoxynaphthalen-1-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 9 October 2008; accepted 25 November 2008; online 29 November 2008)

The title compound, C18H13ClO3, has an intra­molecular O—H⋯O=C hydrogen bond between the carbonyl group and the hydr­oxy substituent on the naphthalene ring system. The angle between the C=O bond plane and the naphthalene ring system is relatively small [20.96 (8)°]. The angle between the benzene ring and the carbonyl group is rather large [35.65 (9)°] compared to that in an analogous compound [3.43 (11)°] having a meth­oxy group instead of a hydroxy substituent.

Related literature

For the structures of closely related compounds, see: Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClO3

  • Mr = 312.73

  • Orthorhombic, P b c a

  • a = 17.8030 (3) Å

  • b = 8.68121 (10) Å

  • c = 18.8683 (3) Å

  • V = 2916.14 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 123 K

  • 0.60 × 0.15 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.485, Tmax = 0.886

  • 49864 measured reflections

  • 2669 independent reflections

  • 2347 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.08

  • 2669 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.94 (2) 1.71 (2) 2.5573 (16) 148 (2)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have reported on the crystal structure of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene, (I) [Mitsui et al., 2008]. As a part of our ongoing studies on the synthesis and crystal structure analyses of aroylated naphthalene derivatives, we prepared and analysed the crystal structure of the title compound, (II). Compound (II) was prepared by regioselective demethylation reaction of compound (I) with aluminium trichloride.

The molecular structure of compound (II) is illustrated in Fig. 1. In analogous aroylated naphthalenes, for example compound (I) shown in Fig. 2, the CO bond plane is almost perpendicular to the mean plane of the naphthalene ring (Nakaema et al., 2007, 2008; Mitsui et al., 2008). In contrast, the angle between the CO bond and the naphthalene ring in compound (II) is considerably smaller, i.e. 20.96 (8)°. This is apparently caused by the intramolecular O—H···OC hydrogen bond, which forms a six-membered ring including the carbonyl group and an edge of the naphthalene ring (Fig. 1 and Table 1).

In compound (I) the CO bond and the benzene ring are almost coplanar with a dihedral angle of 3.43 (11)°. In compound (II) the mean plane of the benzene ring is twisted away from the CO bond by 35.65 (9)°. This is presumably caused by the release of the rather large steric repulsion between the benzene ring and the naphthalene ring brought about by the small angle of the CO bond plane and the naphthalene ring. The dihedral angle between the naphthalene ring (C1—C10) and the benzene ring (C12—C17) is 58.10 (6)°.

In the crystal structure the molecular packing of (II) is mainly stabilized by van der Waals interactions. The naphthalene rings interact with the phenyl rings [C5···C13 = 3.363 (2) Å] and the carbonyl groups [H6···O1 = 2.70 Å] along the a-axis. They also interact with the methyl groups [H3···C18 = 2.79 Å] and aroyl groups [H6···Cl1 = 2.88 Å] along the c-axis (Fig. 3). On the other hand, the naphthalene rings also interact with the methyl groups [C6···H18B = 2.81 Å, C7···H18B = 2.70 Å] and the phenyl rings [C6···H17 = 2.88 Å, C7···H17 = 2.79 Å] along the b-axis. The naphthalene rings are almost perpendicular to the phenyl rings of the adjacent molecules along the b-axis. In addition, the hydroxy groups interact with the phenyl rings [O2···H14 = 2.71 Å] along the b-axis (Fig. 4).

Related literature top

For the structures of closely related compounds, see: Nakaema et al. (2007, 2008); Mitsui et al. (2008).

Experimental top

To a solution of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (33 mg, 0.10 mmol) in CH2Cl2 (1.0 ml) was added AlCl3 (67 mg, 0.50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H2O (5 ml) and CHCl3 (3 ml). The aqueous layer was extracted with CHCl3 (3 × 5 ml). The combined organic layers were washed with brine (3 × 10 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexane to give compound (II) as yellow platelets (m.p. 391–391.5 K, yield 23 mg, 75%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 11.35 (s, 1H), 7.85 (d, 1H), 7.63 (d, 1H), 7.58 (d, 2H), 7.40 (d, 2H), 7.07 (d, 1H), 6.91 (dd, 1H), 6.58 (d, 1H), 3.37 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 199.1, 162.6, 158.2, 138.8, 138.7, 136.5, 133.8, 130.7, 130.2, 128.9, 123.7, 116.4, 115.8, 113.4, 106.5, 54.5; IR (KBr): 3434, 1623, 1583, 1513, 1214, 843.

Anal. Calcd for C18H13ClO3: C 69.13, H 4.19. Found: C 69.11, H 4.09.

Refinement top

All the H-atoms could be located in difference Fourier maps. The OH hydrogen atom was freely refined: O2—H2 = 0.94 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (II), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular structure of compound (I) [Mitsui et al., 2008], showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A partial crystal packing diagram of compound (II), viewed down the b-axis (the intermolecular C—H···O and C—H···π interactions are shown as dashed lines).
[Figure 4] Fig. 4. A partial crystal packing diagram of compound (II), viewed down the c-axis (the intermolecular C—H···O and C—H···π interactions are shown as dashed lines).
(4-Chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone top
Crystal data top
C18H13ClO3Dx = 1.425 Mg m3
Mr = 312.73Melting point = 391.0–391.5 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 42602 reflections
a = 17.8030 (3) Åθ = 3.4–68.2°
b = 8.68121 (10) ŵ = 2.41 mm1
c = 18.8683 (3) ÅT = 123 K
V = 2916.14 (8) Å3Plate, yellow
Z = 80.60 × 0.15 × 0.05 mm
F(000) = 1296
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2669 independent reflections
Radiation source: rotating anode2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.7°
ω scansh = 2121
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1010
Tmin = 0.485, Tmax = 0.886l = 2222
49864 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: dfimap
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6658P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2669 reflectionsΔρmax = 0.17 e Å3
205 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00062 (11)
Crystal data top
C18H13ClO3V = 2916.14 (8) Å3
Mr = 312.73Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 17.8030 (3) ŵ = 2.41 mm1
b = 8.68121 (10) ÅT = 123 K
c = 18.8683 (3) Å0.60 × 0.15 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2669 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2347 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.886Rint = 0.033
49864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.17 e Å3
2669 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05110 (2)0.23154 (6)0.500766 (19)0.05295 (17)
O10.04658 (5)0.08073 (14)0.17181 (6)0.0439 (3)
O20.12423 (7)0.21814 (15)0.07692 (6)0.0485 (3)
H20.0840 (13)0.163 (3)0.0974 (11)0.070 (7)*
O30.29872 (6)0.03670 (13)0.41875 (6)0.0474 (3)
C10.16824 (8)0.17285 (16)0.19660 (7)0.0299 (3)
C20.17846 (9)0.22425 (17)0.12659 (8)0.0373 (3)
C30.24694 (10)0.28979 (18)0.10428 (8)0.0432 (4)
H30.25180.32890.05750.052*
C40.30589 (9)0.29694 (18)0.14974 (9)0.0415 (4)
H40.35140.34390.13470.050*
C50.36473 (8)0.23357 (18)0.26380 (10)0.0419 (4)
H50.41040.27790.24760.050*
C60.36219 (8)0.16956 (18)0.32922 (9)0.0433 (4)
H60.40520.17140.35900.052*
C70.29510 (8)0.10024 (17)0.35260 (8)0.0368 (3)
C80.23210 (7)0.09796 (16)0.31021 (7)0.0312 (3)
H80.18800.04730.32620.037*
C90.23251 (7)0.17038 (15)0.24311 (7)0.0293 (3)
C100.30113 (7)0.23607 (16)0.21894 (9)0.0341 (3)
C110.09175 (7)0.12732 (16)0.21759 (8)0.0325 (3)
C120.06218 (7)0.14707 (16)0.29105 (8)0.0304 (3)
C130.00695 (8)0.04620 (17)0.31572 (8)0.0354 (3)
H130.00790.03890.28730.042*
C140.02637 (8)0.06910 (18)0.38113 (8)0.0389 (4)
H140.06300.00110.39840.047*
C150.00543 (8)0.19623 (18)0.42098 (8)0.0364 (3)
C160.04883 (8)0.29823 (17)0.39772 (8)0.0346 (3)
H160.06260.38460.42580.041*
C170.08296 (8)0.27253 (16)0.33264 (8)0.0320 (3)
H170.12080.34110.31630.038*
C180.23232 (12)0.0353 (2)0.44536 (9)0.0560 (5)
H18A0.24220.07700.49270.067*
H18B0.21740.11920.41350.067*
H18C0.19180.04070.44810.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (3)0.0813 (4)0.0376 (2)0.0016 (2)0.00670 (15)0.00181 (19)
O10.0292 (6)0.0561 (7)0.0463 (6)0.0002 (5)0.0077 (4)0.0137 (5)
O20.0513 (7)0.0577 (8)0.0364 (6)0.0083 (6)0.0084 (5)0.0005 (5)
O30.0542 (7)0.0414 (6)0.0466 (6)0.0105 (5)0.0200 (5)0.0052 (5)
C10.0286 (7)0.0260 (7)0.0351 (7)0.0025 (5)0.0004 (5)0.0043 (5)
C20.0416 (8)0.0317 (8)0.0385 (8)0.0069 (6)0.0016 (6)0.0048 (6)
C30.0554 (9)0.0328 (9)0.0413 (8)0.0008 (7)0.0116 (8)0.0006 (7)
C40.0395 (8)0.0313 (8)0.0536 (10)0.0038 (6)0.0153 (7)0.0075 (7)
C50.0245 (7)0.0363 (8)0.0649 (10)0.0006 (6)0.0027 (7)0.0195 (7)
C60.0268 (7)0.0396 (9)0.0635 (11)0.0073 (6)0.0130 (7)0.0200 (8)
C70.0368 (8)0.0295 (8)0.0441 (8)0.0104 (6)0.0112 (6)0.0111 (6)
C80.0274 (7)0.0263 (7)0.0398 (7)0.0028 (5)0.0033 (5)0.0053 (6)
C90.0253 (7)0.0237 (7)0.0388 (7)0.0025 (5)0.0001 (5)0.0074 (5)
C100.0276 (7)0.0267 (7)0.0482 (9)0.0006 (5)0.0051 (6)0.0102 (6)
C110.0264 (7)0.0290 (7)0.0422 (8)0.0029 (6)0.0056 (6)0.0043 (6)
C120.0213 (6)0.0298 (7)0.0402 (7)0.0025 (5)0.0033 (5)0.0007 (6)
C130.0263 (7)0.0305 (8)0.0493 (8)0.0003 (6)0.0043 (6)0.0018 (6)
C140.0274 (7)0.0392 (9)0.0502 (9)0.0027 (6)0.0010 (6)0.0097 (7)
C150.0281 (7)0.0448 (9)0.0363 (7)0.0057 (6)0.0007 (6)0.0059 (6)
C160.0312 (7)0.0342 (8)0.0383 (8)0.0026 (6)0.0017 (6)0.0028 (6)
C170.0258 (7)0.0298 (7)0.0405 (8)0.0001 (5)0.0008 (6)0.0000 (6)
C180.0896 (14)0.0381 (9)0.0402 (9)0.0063 (9)0.0156 (9)0.0008 (7)
Geometric parameters (Å, º) top
Cl1—C151.7381 (15)C7—C81.3778 (19)
O1—C111.2476 (17)C8—C91.414 (2)
O2—C21.3466 (19)C8—H80.9500
O2—H20.94 (2)C9—C101.4233 (19)
O3—C71.3661 (19)C11—C121.493 (2)
O3—C181.429 (2)C12—C171.392 (2)
C1—C21.406 (2)C12—C131.397 (2)
C1—C91.4422 (19)C13—C141.384 (2)
C1—C111.4722 (19)C13—H130.9500
C2—C31.410 (2)C14—C151.387 (2)
C3—C41.357 (2)C14—H140.9500
C3—H30.9500C15—C161.382 (2)
C4—C101.411 (2)C16—C171.388 (2)
C4—H40.9500C16—H160.9500
C5—C61.354 (3)C17—H170.9500
C5—C101.414 (2)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.408 (2)C18—H18C0.9800
C6—H60.9500
C2—O2—H2106.3 (13)C4—C10—C9119.88 (14)
C7—O3—C18117.31 (12)C5—C10—C9119.30 (15)
C2—C1—C9118.28 (13)O1—C11—C1119.80 (13)
C2—C1—C11117.23 (13)O1—C11—C12116.93 (12)
C9—C1—C11124.48 (12)C1—C11—C12123.04 (12)
O2—C2—C1123.27 (15)C17—C12—C13119.32 (13)
O2—C2—C3115.35 (14)C17—C12—C11121.30 (13)
C1—C2—C3121.36 (14)C13—C12—C11119.07 (13)
C4—C3—C2119.91 (15)C14—C13—C12120.60 (14)
C4—C3—H3120.0C14—C13—H13119.7
C2—C3—H3120.0C12—C13—H13119.7
C3—C4—C10121.42 (14)C13—C14—C15118.87 (14)
C3—C4—H4119.3C13—C14—H14120.6
C10—C4—H4119.3C15—C14—H14120.6
C6—C5—C10121.68 (15)C16—C15—C14121.71 (14)
C6—C5—H5119.2C16—C15—Cl1119.28 (12)
C10—C5—H5119.2C14—C15—Cl1118.97 (12)
C5—C6—C7119.28 (14)C15—C16—C17118.95 (14)
C5—C6—H6120.4C15—C16—H16120.5
C7—C6—H6120.4C17—C16—H16120.5
O3—C7—C8124.26 (14)C16—C17—C12120.53 (13)
O3—C7—C6114.75 (13)C16—C17—H17119.7
C8—C7—C6120.98 (15)C12—C17—H17119.7
C7—C8—C9120.61 (13)O3—C18—H18A109.5
C7—C8—H8119.7O3—C18—H18B109.5
C9—C8—H8119.7H18A—C18—H18B109.5
C8—C9—C10118.02 (13)O3—C18—H18C109.5
C8—C9—C1123.19 (12)H18A—C18—H18C109.5
C10—C9—C1118.68 (13)H18B—C18—H18C109.5
C4—C10—C5120.77 (14)
C9—C1—C2—O2173.72 (13)C6—C5—C10—C90.3 (2)
C11—C1—C2—O27.2 (2)C8—C9—C10—C4174.23 (12)
C9—C1—C2—C37.8 (2)C1—C9—C10—C42.23 (19)
C11—C1—C2—C3171.28 (13)C8—C9—C10—C53.14 (19)
O2—C2—C3—C4177.98 (14)C1—C9—C10—C5179.59 (12)
C1—C2—C3—C43.4 (2)C2—C1—C11—O126.3 (2)
C2—C3—C4—C101.8 (2)C9—C1—C11—O1154.68 (14)
C10—C5—C6—C71.6 (2)C2—C1—C11—C12148.00 (14)
C18—O3—C7—C80.5 (2)C9—C1—C11—C1231.0 (2)
C18—O3—C7—C6179.99 (13)O1—C11—C12—C17139.55 (14)
C5—C6—C7—O3178.89 (13)C1—C11—C12—C1734.9 (2)
C5—C6—C7—C80.6 (2)O1—C11—C12—C1333.95 (19)
O3—C7—C8—C9178.21 (12)C1—C11—C12—C13151.57 (13)
C6—C7—C8—C92.4 (2)C17—C12—C13—C140.7 (2)
C7—C8—C9—C104.17 (19)C11—C12—C13—C14174.37 (13)
C7—C8—C9—C1179.55 (13)C12—C13—C14—C151.7 (2)
C2—C1—C9—C8169.18 (13)C13—C14—C15—C161.4 (2)
C11—C1—C9—C811.8 (2)C13—C14—C15—Cl1176.26 (11)
C2—C1—C9—C107.07 (19)C14—C15—C16—C170.2 (2)
C11—C1—C9—C10171.92 (13)Cl1—C15—C16—C17177.50 (11)
C3—C4—C10—C5175.05 (14)C15—C16—C17—C120.8 (2)
C3—C4—C10—C92.3 (2)C13—C12—C17—C160.5 (2)
C6—C5—C10—C4177.05 (14)C11—C12—C17—C16172.96 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.94 (2)1.71 (2)2.5573 (16)148 (2)

Experimental details

Crystal data
Chemical formulaC18H13ClO3
Mr312.73
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)17.8030 (3), 8.68121 (10), 18.8683 (3)
V3)2916.14 (8)
Z8
Radiation typeCu Kα
µ (mm1)2.41
Crystal size (mm)0.60 × 0.15 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.485, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
49864, 2669, 2347
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.08
No. of reflections2669
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.94 (2)1.71 (2)2.5573 (16)148 (2)
 

Acknowledgements

This work was financially supported by SEIKI KOGYO CO., Ltd, Tokorozawa, Saitama, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds