metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1631-m1632

Tetra­aqua­hexa­kis(μ2-quinoline-4-carboxyl­ato)diyttrium(III) dihydrate

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 14 November 2008; accepted 24 November 2008; online 29 November 2008)

In the title centrosymmetric binuclear complex, [Y2(C10H6NO2)6(H2O)4]·2H2O, each YIII atom is nine-coordin­ated by nine O atoms from five ligands and two water mol­ecules in a slightly distorted monocapped square-anti­prismatic coordination environment. The YIII atoms are separated by a distance of 4.0363 (9) Å. The ligands coordinate in three different modes: chelating, bridging and a mixed chelating bridging mode. In the crystal structure, the binuclear complexes are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For transition metal complexes of 4-quinoline­carboxylic acid, see: Bu et al. (2005[Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Susumu, K. & Joan, R. (2005). Inorg. Chem. 44, 9837-9846.]); Chen et al. (2002[Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 35-37.]); Morsy & Vratislav (2006[Morsy, A. & Vratislav, L. (2006). Polyhedron, 25, 1187-1194.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C10H6NO2)6(H2O)4]·2H2O

  • Mr = 1318.86

  • Monoclinic, P 21 /n

  • a = 11.623 (2) Å

  • b = 16.361 (3) Å

  • c = 15.312 (3) Å

  • β = 106.03 (3)°

  • V = 2798.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 293 (2) K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.565, Tmax = 0.605 (expected range = 0.535–0.573)

  • 9525 measured reflections

  • 4898 independent reflections

  • 3615 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.073

  • S = 0.91

  • 4898 reflections

  • 412 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Y1—O1 2.398 (2)
Y1—O1W 2.337 (3)
Y1—O2 2.461 (2)
Y1—O2W 2.370 (3)
Y1—O4 2.3245 (19)
Y1—O5 2.419 (3)
Y1—O6 2.735 (2)
Y1—O3i 2.3264 (19)
Y1—O6i 2.309 (2)
Symmetry code: (i) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3Wii 0.75 (4) 1.99 (4) 2.727 (4) 168 (3)
O2W—H2WA⋯O3Wii 0.78 (3) 2.00 (3) 2.751 (4) 161 (3)
O3W—H3WA⋯N2iii 0.87 (4) 1.84 (4) 2.708 (4) 172 (4)
O1W—H1WB⋯N3iv 0.78 (4) 1.96 (4) 2.735 (4) 173 (4)
O2W—H2WB⋯N1v 0.78 (4) 1.99 (4) 2.739 (4) 161 (4)
O3W—H3WB⋯O2Wvi 0.67 (4) 2.30 (3) 2.865 (4) 143 (3)
Symmetry codes: (ii) -x, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (vi) x, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some crystal structures of transition metal complexes with the ligand 4-quinolinecarboxylic acid (HL) have been published previously, for example, with cadmium(II) (Morsy & Vratislav, 2006; Chen et al., 2002), copper(II), cobalt(II) and manganese(II) (Bu et al., 2005). However, no rare earth metal complexes of HL have been reported to date. Herein, we report on the synthesis and crystal structure of a new binuclear yittrium(III) complex of 4-quinolinecarboxylic acid, (I).

The molecuar structute of title compound (I), a centrosymmetric binuclear complex, is illustrated in Fig. 1. The complex is compossed of two yttrium(III) atoms and six 4-quinolinecarboxylate ligands, along with four coordinated and two uncoordinated water molecules. Each yttrium atom is nine-coordinated, with nine oxygen atoms from five ligands and two water molecules, showing a slightly distorted monocapped square-antiprism coordination environment (Table 1). The Y1—O bond distances vary from 2.309 (2) to 2.735 (2) Å, while the Y1···Y1i separation is 4.0363 (9) Å [Symmetry code: (i) -x + 1, -y + 2, -z + 2]. The six 4-quinolinecarboxylate ligands adopt three different coordination modes; chelating, bridging, and a mixed mode of chelating and bridging (Table 1).

In the crystal structure O—H···O and O—H···N hydrogen bonds link the binuclear complexes and uncoordinated water molecules to form a three-dimensional network (Table 2).

Related literature top

For transition metal complexes of 4-quinolinecarboxylic acid, see: Bu et al. (2005); Chen et al. (2002); Morsy & Vratislav (2006).

Experimental top

A mixture of 4-quinolinecarboxylic acid, sodium hydroxide and yttrium nitrate, in the molar ratio 3:6:1, were dissolved in a mixture of ethanol and water. The resulting solution was filtered and the filtrate allowed to stand in the air for several days. Finally colorless block-like crystals, suitable for X-ray analysis, were obtained with a yield of 25%.

Refinement top

The water H atoms were located in difference Fourier maps and freely refined; O—H = 0.67 (3) - 0.88 (4) Å, with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), with displacement ellipsoids drawn at the 30% probability level (C-bound H-atoms have been removed for clarity; Symmetry code: (A) -x + 1, -y + 2, -z + 2])
Tetraaquahexakis(µ2-quinoline-4-carboxylato)diyttrium(III) dihydrate top
Crystal data top
[Y2(C10H6NO2)6(H2O)4]·2H2OF(000) = 1344
Mr = 1318.86Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6629 reflections
a = 11.623 (2) Åθ = 3.0–27.5°
b = 16.361 (3) ŵ = 2.15 mm1
c = 15.312 (3) ÅT = 293 K
β = 106.03 (3)°Block, colorless
V = 2798.7 (10) Å30.30 × 0.28 × 0.26 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4898 independent reflections
Radiation source: fine-focus sealed tube3615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1313
Tmin = 0.565, Tmax = 0.605k = 1919
9525 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
4898 reflections(Δ/σ)max = 0.003
412 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Y2(C10H6NO2)6(H2O)4]·2H2OV = 2798.7 (10) Å3
Mr = 1318.86Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.623 (2) ŵ = 2.15 mm1
b = 16.361 (3) ÅT = 293 K
c = 15.312 (3) Å0.30 × 0.28 × 0.26 mm
β = 106.03 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3615 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.605Rint = 0.031
9525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.38 e Å3
4898 reflectionsΔρmin = 0.30 e Å3
412 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.33612 (2)0.97169 (1)1.01215 (2)0.0277 (1)
O10.3073 (2)0.93621 (12)1.15662 (15)0.0601 (9)
O1W0.1551 (2)0.91430 (16)0.92842 (18)0.0555 (9)
O20.32722 (19)0.83332 (12)1.07294 (14)0.0534 (8)
O2W0.1754 (2)1.05108 (15)1.0333 (2)0.0506 (9)
O30.58136 (16)0.91289 (11)0.90536 (13)0.0421 (7)
O40.39176 (15)0.88949 (10)0.90683 (13)0.0382 (6)
O50.27258 (18)1.06412 (15)0.88454 (17)0.0733 (10)
O60.46548 (16)1.05938 (11)0.92006 (13)0.0427 (7)
N10.3198 (2)0.68024 (15)1.35199 (18)0.0506 (10)
N20.4858 (2)0.66536 (15)0.71325 (17)0.0456 (9)
N30.3578 (2)1.28030 (15)0.68068 (18)0.0477 (9)
C10.3158 (2)0.86114 (17)1.1454 (2)0.0372 (10)
C20.3135 (2)0.80178 (16)1.22069 (19)0.0373 (10)
C30.3322 (3)0.72121 (17)1.2052 (2)0.0470 (11)
C40.3354 (3)0.66315 (19)1.2734 (2)0.0549 (13)
C50.2994 (2)0.75971 (18)1.3694 (2)0.0426 (10)
C60.2815 (3)0.7777 (2)1.4548 (2)0.0567 (12)
C70.2608 (3)0.8547 (2)1.4768 (2)0.0644 (14)
C80.2557 (3)0.9187 (2)1.4147 (2)0.0566 (12)
C90.2729 (3)0.90404 (18)1.3318 (2)0.0466 (11)
C100.2956 (2)0.82397 (17)1.30585 (19)0.0371 (9)
C110.4845 (2)0.87364 (15)0.88500 (18)0.0336 (9)
C120.4823 (2)0.79992 (15)0.82552 (19)0.0338 (9)
C130.5075 (2)0.80853 (17)0.7444 (2)0.0420 (10)
C140.5075 (3)0.73995 (18)0.6898 (2)0.0471 (11)
C150.4610 (2)0.65485 (16)0.7944 (2)0.0390 (10)
C160.4388 (3)0.57510 (18)0.8204 (2)0.0537 (13)
C170.4165 (3)0.56137 (19)0.9005 (3)0.0602 (13)
C180.4145 (3)0.62605 (18)0.9599 (2)0.0553 (11)
C190.4325 (2)0.70432 (17)0.9368 (2)0.0443 (11)
C200.4567 (2)0.72081 (16)0.85339 (19)0.0356 (9)
C210.3686 (3)1.08793 (16)0.87468 (19)0.0373 (10)
C220.3669 (2)1.15372 (16)0.80556 (19)0.0343 (9)
C230.3456 (3)1.23251 (17)0.8256 (2)0.0470 (11)
C240.3423 (3)1.29366 (18)0.7608 (2)0.0528 (11)
C250.3782 (2)1.20227 (18)0.6586 (2)0.0402 (10)
C260.3917 (3)1.1866 (2)0.5712 (2)0.0581 (14)
C270.4122 (3)1.1097 (2)0.5471 (2)0.0669 (14)
C280.4202 (3)1.0448 (2)0.6076 (2)0.0633 (12)
C290.4065 (3)1.05687 (18)0.6915 (2)0.0490 (11)
C300.3841 (2)1.13619 (16)0.71960 (19)0.0371 (9)
O3W0.0170 (2)0.96786 (16)0.11733 (18)0.0562 (9)
H1WA0.102 (3)0.942 (2)0.911 (3)0.078 (15)*
H2WA0.122 (3)1.057 (2)0.990 (2)0.061 (13)*
H3A0.342700.704901.149700.0560*
H1WB0.153 (3)0.874 (2)0.901 (3)0.082 (14)*
H4A0.349700.608901.261400.0660*
H2WB0.187 (3)1.092 (2)1.060 (3)0.088 (16)*
H6A0.284100.735801.496300.0680*
H7A0.249800.865701.533500.0770*
H8A0.240400.971601.430400.0680*
H9A0.269700.947201.291700.0560*
H13A0.524800.859900.725200.0500*
H14A0.523800.747400.634200.0560*
H16A0.439600.531500.781500.0640*
H17A0.402200.508400.916800.0720*
H18A0.400800.615401.015800.0660*
H19A0.428800.746900.976200.0530*
H23A0.333401.245500.881500.0560*
H24A0.328301.347100.775800.0630*
H26A0.386501.229400.530300.0700*
H27A0.421001.099900.489400.0800*
H28A0.435300.992400.590000.0760*
H29A0.411701.012900.730900.0590*
H3WA0.013 (4)0.923 (2)0.147 (3)0.117 (17)*
H3WB0.072 (3)0.974 (2)0.112 (2)0.055 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0339 (1)0.0235 (1)0.0277 (1)0.0005 (1)0.0121 (1)0.0002 (1)
O10.1087 (18)0.0350 (12)0.0497 (14)0.0074 (12)0.0438 (14)0.0098 (10)
O1W0.0402 (13)0.0437 (15)0.0760 (18)0.0043 (12)0.0051 (12)0.0294 (14)
O20.0862 (16)0.0393 (12)0.0402 (13)0.0050 (11)0.0266 (12)0.0044 (10)
O2W0.0427 (13)0.0510 (15)0.0561 (17)0.0042 (12)0.0101 (12)0.0255 (13)
O30.0395 (11)0.0357 (11)0.0551 (13)0.0049 (9)0.0196 (10)0.0150 (10)
O40.0369 (10)0.0381 (11)0.0440 (12)0.0005 (9)0.0186 (9)0.0099 (9)
O50.0437 (13)0.0940 (18)0.0874 (19)0.0106 (12)0.0266 (13)0.0621 (15)
O60.0416 (11)0.0361 (11)0.0428 (13)0.0065 (9)0.0008 (10)0.0073 (9)
N10.0554 (16)0.0482 (16)0.0518 (18)0.0027 (13)0.0206 (14)0.0216 (13)
N20.0480 (15)0.0426 (15)0.0467 (17)0.0014 (12)0.0138 (13)0.0152 (12)
N30.0466 (15)0.0436 (16)0.0516 (18)0.0016 (12)0.0113 (13)0.0206 (13)
C10.0385 (16)0.0398 (17)0.0346 (18)0.0005 (13)0.0122 (13)0.0088 (14)
C20.0348 (15)0.0405 (17)0.0375 (18)0.0027 (13)0.0115 (13)0.0092 (13)
C30.059 (2)0.0392 (18)0.048 (2)0.0031 (15)0.0235 (16)0.0075 (15)
C40.067 (2)0.0376 (18)0.067 (3)0.0054 (16)0.0303 (19)0.0186 (16)
C50.0377 (16)0.0518 (19)0.0395 (19)0.0067 (14)0.0129 (14)0.0115 (15)
C60.062 (2)0.071 (2)0.040 (2)0.0121 (18)0.0190 (17)0.0155 (17)
C70.076 (2)0.083 (3)0.041 (2)0.013 (2)0.0276 (19)0.0033 (19)
C80.063 (2)0.059 (2)0.051 (2)0.0069 (17)0.0212 (18)0.0075 (17)
C90.0524 (18)0.0486 (19)0.0389 (19)0.0032 (15)0.0126 (15)0.0057 (15)
C100.0321 (15)0.0444 (17)0.0355 (17)0.0031 (13)0.0103 (13)0.0094 (13)
C110.0398 (16)0.0261 (14)0.0358 (17)0.0004 (12)0.0122 (13)0.0014 (12)
C120.0300 (14)0.0335 (15)0.0380 (17)0.0013 (12)0.0098 (13)0.0071 (13)
C130.0471 (17)0.0365 (16)0.0447 (19)0.0017 (13)0.0166 (15)0.0053 (14)
C140.0510 (18)0.054 (2)0.0373 (18)0.0011 (15)0.0139 (15)0.0100 (15)
C150.0336 (15)0.0333 (16)0.048 (2)0.0001 (12)0.0077 (14)0.0098 (13)
C160.055 (2)0.0370 (18)0.070 (3)0.0015 (15)0.0186 (18)0.0114 (17)
C170.061 (2)0.0358 (18)0.085 (3)0.0042 (16)0.022 (2)0.0041 (18)
C180.063 (2)0.0447 (19)0.065 (2)0.0022 (16)0.0291 (19)0.0097 (17)
C190.0488 (18)0.0429 (18)0.045 (2)0.0022 (14)0.0192 (15)0.0037 (14)
C200.0294 (14)0.0349 (16)0.0412 (18)0.0008 (12)0.0075 (13)0.0052 (13)
C210.0468 (18)0.0366 (16)0.0309 (16)0.0046 (14)0.0146 (14)0.0048 (13)
C220.0288 (14)0.0371 (16)0.0368 (17)0.0047 (12)0.0086 (12)0.0112 (13)
C230.0570 (19)0.0436 (18)0.0441 (19)0.0067 (15)0.0202 (16)0.0062 (15)
C240.060 (2)0.0336 (17)0.066 (2)0.0050 (15)0.0193 (18)0.0120 (16)
C250.0325 (15)0.0485 (19)0.0396 (19)0.0010 (13)0.0099 (13)0.0138 (14)
C260.053 (2)0.083 (3)0.040 (2)0.0013 (18)0.0155 (16)0.0195 (18)
C270.065 (2)0.097 (3)0.043 (2)0.005 (2)0.0221 (18)0.002 (2)
C280.069 (2)0.067 (2)0.057 (2)0.0112 (19)0.0224 (19)0.0103 (19)
C290.0554 (19)0.0471 (18)0.046 (2)0.0072 (15)0.0164 (16)0.0032 (15)
C300.0345 (15)0.0421 (17)0.0354 (17)0.0026 (13)0.0109 (13)0.0082 (13)
O3W0.0479 (15)0.0555 (16)0.0707 (17)0.0086 (13)0.0258 (13)0.0282 (13)
Geometric parameters (Å, º) top
Y1—Y1i4.0363 (9)C11—C121.507 (4)
Y1—O12.398 (2)C12—C201.420 (4)
Y1—O1W2.337 (3)C12—C131.360 (4)
Y1—O22.461 (2)C13—C141.399 (4)
Y1—O2W2.370 (3)C15—C201.417 (4)
Y1—O42.3245 (19)C15—C161.409 (4)
Y1—O52.419 (3)C16—C171.341 (5)
Y1—O62.735 (2)C17—C181.400 (5)
Y1—O3i2.3264 (19)C18—C191.360 (4)
Y1—O6i2.309 (2)C19—C201.408 (4)
O1—C11.248 (3)C21—C221.506 (4)
O2—C11.240 (4)C22—C301.414 (4)
O3—C111.258 (3)C22—C231.364 (4)
O4—C111.241 (3)C23—C241.402 (4)
O5—C211.230 (4)C25—C301.418 (4)
O6—C211.240 (4)C25—C261.413 (4)
O1W—H1WB0.78 (4)C26—C271.351 (5)
O1W—H1WA0.75 (4)C27—C281.395 (4)
O2W—H2WB0.78 (4)C28—C291.352 (4)
O2W—H2WA0.78 (3)C29—C301.414 (4)
O3W—H3WB0.67 (4)C3—H3A0.9300
O3W—H3WA0.87 (4)C4—H4A0.9300
N1—C51.361 (4)C6—H6A0.9300
N1—C41.296 (4)C7—H7A0.9300
N2—C141.316 (4)C8—H8A0.9300
N2—C151.362 (4)C9—H9A0.9300
N3—C241.307 (4)C13—H13A0.9300
N3—C251.358 (4)C14—H14A0.9300
C1—C21.513 (4)C16—H16A0.9300
C2—C31.367 (4)C17—H17A0.9300
C2—C101.423 (4)C18—H18A0.9300
C3—C41.405 (4)C19—H19A0.9300
C5—C101.425 (4)C23—H23A0.9300
C5—C61.411 (4)C24—H24A0.9300
C6—C71.343 (5)C26—H26A0.9300
C7—C81.405 (4)C27—H27A0.9300
C8—C91.360 (4)C28—H28A0.9300
C9—C101.415 (4)C29—H29A0.9300
O1—Y1—O1W94.29 (9)C6—C7—C8120.4 (3)
O1—Y1—O252.93 (7)C7—C8—C9120.7 (3)
O1—Y1—O2W71.97 (9)C8—C9—C10120.8 (3)
O1—Y1—O4129.52 (7)C2—C10—C5116.9 (2)
O1—Y1—O5143.80 (8)C2—C10—C9125.4 (3)
O1—Y1—O6147.07 (7)C5—C10—C9117.7 (3)
O1—Y1—C126.54 (8)O3—C11—C12115.0 (2)
O1—Y1—O3i80.64 (7)O4—C11—C12117.3 (2)
O1—Y1—O6i84.75 (8)O3—C11—O4127.7 (2)
O1W—Y1—O273.28 (9)C11—C12—C20121.2 (2)
O1W—Y1—O2W70.79 (9)C11—C12—C13119.8 (2)
O1W—Y1—O476.57 (8)C13—C12—C20119.0 (2)
O1W—Y1—O577.31 (9)C12—C13—C14119.9 (3)
O1W—Y1—O6117.89 (8)N2—C14—C13123.3 (3)
O1W—Y1—C183.99 (9)C16—C15—C20118.9 (3)
O1W—Y1—O3i142.91 (8)N2—C15—C20122.6 (2)
O1W—Y1—O6i142.58 (8)N2—C15—C16118.4 (3)
O2—Y1—O2W109.60 (9)C15—C16—C17120.7 (3)
O2—Y1—O477.23 (7)C16—C17—C18120.7 (3)
O2—Y1—O5147.69 (8)C17—C18—C19120.8 (3)
O2—Y1—O6139.84 (7)C18—C19—C20120.0 (3)
O2—Y1—C126.42 (8)C12—C20—C19123.9 (3)
O2—Y1—O3i126.54 (7)C15—C20—C19118.9 (2)
O2—Y1—O6i76.61 (8)C12—C20—C15117.1 (2)
O2W—Y1—O4142.44 (9)O6—C21—C22119.8 (3)
O2W—Y1—O572.03 (9)O5—C21—C22118.5 (3)
O2W—Y1—O6110.45 (8)O5—C21—O6121.8 (3)
O2W—Y1—C191.51 (9)C21—C22—C30122.1 (2)
O2W—Y1—O3i72.74 (8)C23—C22—C30118.8 (3)
O2W—Y1—O6i141.84 (9)C21—C22—C23119.1 (3)
O4—Y1—O583.27 (8)C22—C23—C24119.1 (3)
O4—Y1—O669.39 (7)N3—C24—C23124.1 (3)
O4—Y1—C1103.21 (8)C26—C25—C30119.2 (3)
O3i—Y1—O4133.97 (7)N3—C25—C26118.6 (3)
O4—Y1—O6i75.52 (7)N3—C25—C30122.2 (3)
O5—Y1—O649.03 (7)C25—C26—C27120.1 (3)
O5—Y1—C1158.26 (8)C26—C27—C28120.8 (3)
O3i—Y1—O585.37 (8)C27—C28—C29121.1 (3)
O5—Y1—O6i123.02 (8)C28—C29—C30120.2 (3)
O6—Y1—C1152.67 (7)C25—C30—C29118.6 (3)
O3i—Y1—O669.59 (7)C22—C30—C29123.7 (3)
O6—Y1—O6i74.00 (7)C22—C30—C25117.7 (2)
O3i—Y1—C1103.59 (8)C2—C3—H3A120.00
O6i—Y1—C178.69 (8)C4—C3—H3A120.00
O3i—Y1—O6i73.97 (7)C3—C4—H4A118.00
Y1—O1—C194.29 (18)N1—C4—H4A118.00
Y1—O2—C191.54 (17)C5—C6—H6A120.00
Y1i—O3—C11139.05 (17)C7—C6—H6A120.00
Y1—O4—C11137.44 (17)C8—C7—H7A120.00
Y1—O5—C21102.25 (19)C6—C7—H7A120.00
Y1—O6—C2186.73 (18)C9—C8—H8A120.00
Y1—O6—Y1i106.01 (8)C7—C8—H8A120.00
Y1i—O6—C21167.1 (2)C8—C9—H9A120.00
H1WA—O1W—H1WB115 (4)C10—C9—H9A120.00
Y1—O1W—H1WB122 (3)C12—C13—H13A120.00
Y1—O1W—H1WA119 (3)C14—C13—H13A120.00
H2WA—O2W—H2WB109 (4)C13—C14—H14A118.00
Y1—O2W—H2WA115 (2)N2—C14—H14A118.00
Y1—O2W—H2WB121 (3)C15—C16—H16A120.00
H3WA—O3W—H3WB112 (4)C17—C16—H16A120.00
C4—N1—C5117.7 (3)C18—C17—H17A120.00
C14—N2—C15118.1 (3)C16—C17—H17A120.00
C24—N3—C25118.0 (3)C17—C18—H18A120.00
Y1—C1—C2176.23 (18)C19—C18—H18A120.00
Y1—C1—O262.04 (15)C20—C19—H19A120.00
O1—C1—O2121.1 (3)C18—C19—H19A120.00
O2—C1—C2118.4 (2)C22—C23—H23A120.00
O1—C1—C2120.5 (3)C24—C23—H23A120.00
Y1—C1—O159.18 (16)C23—C24—H24A118.00
C1—C2—C10124.9 (2)N3—C24—H24A118.00
C3—C2—C10118.4 (3)C25—C26—H26A120.00
C1—C2—C3116.7 (3)C27—C26—H26A120.00
C2—C3—C4119.7 (3)C28—C27—H27A120.00
N1—C4—C3124.2 (3)C26—C27—H27A120.00
N1—C5—C10123.0 (3)C27—C28—H28A120.00
N1—C5—C6117.3 (3)C29—C28—H28A119.00
C6—C5—C10119.6 (3)C28—C29—H29A120.00
C5—C6—C7120.7 (3)C30—C29—H29A120.00
O1W—Y1—O1—C167.34 (18)Y1—O1—C1—C2175.6 (2)
O2—Y1—O1—C12.06 (16)Y1—O2—C1—O13.7 (3)
O2W—Y1—O1—C1135.54 (19)Y1—O2—C1—C2175.7 (2)
O4—Y1—O1—C18.8 (2)Y1i—O3—C11—O40.8 (5)
O5—Y1—O1—C1141.65 (17)Y1i—O3—C11—C12179.45 (18)
O6—Y1—O1—C1124.49 (17)Y1—O4—C11—O315.6 (4)
O3i—Y1—O1—C1149.69 (18)Y1—O4—C11—C12165.79 (17)
O6i—Y1—O1—C175.11 (17)Y1—O5—C21—O65.4 (3)
O1—Y1—O2—C12.07 (16)Y1—O5—C21—C22174.5 (2)
O1W—Y1—O2—C1111.02 (18)Y1—O6—C21—O54.6 (3)
O2W—Y1—O2—C149.16 (18)Y1—O6—C21—C22175.2 (2)
O4—Y1—O2—C1169.38 (18)C5—N1—C4—C30.2 (5)
O5—Y1—O2—C1136.32 (17)C4—N1—C5—C100.6 (4)
O6—Y1—O2—C1135.30 (16)C4—N1—C5—C6179.5 (3)
O3i—Y1—O2—C133.5 (2)C14—N2—C15—C200.6 (4)
O6i—Y1—O2—C191.48 (17)C15—N2—C14—C130.7 (5)
O6—Y1i—O3—C1136.8 (3)C14—N2—C15—C16179.4 (3)
O1i—Y1i—O3—C11124.0 (3)C24—N3—C25—C300.6 (4)
O1Wi—Y1i—O3—C11151.3 (2)C25—N3—C24—C230.1 (5)
O2i—Y1i—O3—C1195.9 (3)C24—N3—C25—C26178.2 (3)
O2Wi—Y1i—O3—C11162.1 (3)O2—C1—C2—C34.2 (4)
O4i—Y1i—O3—C1113.5 (3)O1—C1—C2—C103.5 (4)
O5i—Y1i—O3—C1189.5 (3)O2—C1—C2—C10177.0 (3)
O6i—Y1i—O3—C1141.7 (3)O1—C1—C2—C3175.3 (3)
C1i—Y1i—O3—C11110.5 (3)C10—C2—C3—C41.1 (4)
O1—Y1—O4—C1199.1 (3)C1—C2—C10—C92.5 (4)
O1W—Y1—O4—C11176.5 (3)C3—C2—C10—C9178.7 (3)
O2—Y1—O4—C11107.9 (3)C1—C2—C3—C4177.8 (3)
O2W—Y1—O4—C11146.5 (2)C3—C2—C10—C50.4 (4)
O5—Y1—O4—C1198.0 (2)C1—C2—C10—C5178.4 (2)
O6—Y1—O4—C1149.4 (2)C2—C3—C4—N11.1 (5)
C1—Y1—O4—C11103.1 (2)N1—C5—C10—C20.5 (4)
O3i—Y1—O4—C1121.1 (3)C10—C5—C6—C70.1 (5)
O6i—Y1—O4—C1128.7 (2)C6—C5—C10—C90.4 (4)
O1—Y1—O5—C21131.34 (19)N1—C5—C10—C9179.6 (3)
O1W—Y1—O5—C21148.9 (2)C6—C5—C10—C2179.6 (3)
O2—Y1—O5—C21124.1 (2)N1—C5—C6—C7180.0 (3)
O2W—Y1—O5—C21137.5 (2)C5—C6—C7—C80.5 (5)
O4—Y1—O5—C2171.21 (19)C6—C7—C8—C90.7 (5)
O6—Y1—O5—C212.74 (16)C7—C8—C9—C100.4 (5)
C1—Y1—O5—C21179.8 (2)C8—C9—C10—C2179.3 (3)
O3i—Y1—O5—C2164.11 (19)C8—C9—C10—C50.2 (5)
O6i—Y1—O5—C213.4 (2)O3—C11—C12—C20122.7 (3)
O1—Y1—O6—C21126.05 (18)O3—C11—C12—C1356.0 (3)
O1W—Y1—O6—C2140.58 (18)O4—C11—C12—C13122.9 (3)
O2—Y1—O6—C21137.62 (16)O4—C11—C12—C2058.4 (3)
O2W—Y1—O6—C2137.89 (18)C13—C12—C20—C151.0 (4)
O4—Y1—O6—C21101.90 (16)C11—C12—C13—C14178.9 (3)
O5—Y1—O6—C212.66 (16)C20—C12—C13—C140.2 (4)
C1—Y1—O6—C21179.40 (18)C11—C12—C20—C15177.7 (2)
O3i—Y1—O6—C2199.42 (16)C11—C12—C20—C190.4 (4)
O6i—Y1—O6—C21177.89 (17)C13—C12—C20—C19178.3 (3)
O1—Y1—O6—Y1i51.84 (15)C12—C13—C14—N21.1 (5)
O1W—Y1—O6—Y1i141.53 (9)N2—C15—C20—C121.4 (4)
O2—Y1—O6—Y1i44.49 (13)C16—C15—C20—C12178.6 (3)
O2W—Y1—O6—Y1i140.00 (9)N2—C15—C20—C19178.9 (2)
O4—Y1—O6—Y1i80.21 (8)C20—C15—C16—C171.4 (5)
O5—Y1—O6—Y1i179.45 (12)N2—C15—C16—C17178.6 (3)
C1—Y1—O6—Y1i1.51 (19)C16—C15—C20—C191.1 (4)
O3i—Y1—O6—Y1i78.47 (8)C15—C16—C17—C180.2 (5)
O6i—Y1—O6—Y1i0.02 (9)C16—C17—C18—C191.5 (6)
O3—Y1i—O6—Y172.83 (8)C17—C18—C19—C201.7 (5)
O1i—Y1i—O6—Y1154.58 (8)C18—C19—C20—C12176.9 (3)
O1Wi—Y1i—O6—Y1115.21 (13)C18—C19—C20—C150.4 (4)
O2i—Y1i—O6—Y1152.32 (9)O5—C21—C22—C2375.9 (4)
O2Wi—Y1i—O6—Y1102.90 (13)O5—C21—C22—C30102.7 (3)
O4i—Y1i—O6—Y172.29 (7)O6—C21—C22—C23103.9 (3)
O5i—Y1i—O6—Y10.49 (11)O6—C21—C22—C3077.5 (3)
O6i—Y1i—O6—Y10.00 (6)C21—C22—C30—C291.3 (4)
C1i—Y1i—O6—Y1179.30 (9)C23—C22—C30—C250.0 (4)
O1W—Y1—C1—O1112.28 (18)C23—C22—C30—C29179.9 (3)
O2—Y1—C1—O1176.3 (3)C21—C22—C30—C25178.6 (3)
O2W—Y1—C1—O141.78 (18)C21—C22—C23—C24179.1 (3)
O4—Y1—C1—O1173.06 (17)C30—C22—C23—C240.5 (4)
O5—Y1—C1—O181.7 (3)C22—C23—C24—N30.4 (5)
O6—Y1—C1—O1102.5 (2)N3—C25—C26—C27179.9 (3)
O3i—Y1—C1—O130.82 (18)C30—C25—C26—C271.2 (5)
O6i—Y1—C1—O1101.06 (18)N3—C25—C30—C220.5 (4)
O1—Y1—C1—O2176.3 (3)N3—C25—C30—C29179.6 (3)
O1W—Y1—C1—O264.02 (17)C26—C25—C30—C22178.3 (3)
O2W—Y1—C1—O2134.52 (17)C26—C25—C30—C291.6 (4)
O4—Y1—C1—O210.64 (18)C25—C26—C27—C280.1 (5)
O5—Y1—C1—O294.7 (3)C26—C27—C28—C290.7 (5)
O6—Y1—C1—O281.2 (2)C27—C28—C29—C300.2 (5)
O3i—Y1—C1—O2152.88 (16)C28—C29—C30—C22179.0 (3)
O6i—Y1—C1—O282.64 (17)C28—C29—C30—C250.9 (5)
Y1—O1—C1—O23.8 (3)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wii0.75 (4)1.99 (4)2.727 (4)168 (3)
O2W—H2WA···O3Wii0.78 (3)2.00 (3)2.751 (4)161 (3)
O3W—H3WA···N2iii0.87 (4)1.84 (4)2.708 (4)172 (4)
O1W—H1WB···N3iv0.78 (4)1.96 (4)2.735 (4)173 (4)
O2W—H2WB···N1v0.78 (4)1.99 (4)2.739 (4)161 (4)
O3W—H3WB···O2Wvi0.67 (4)2.30 (3)2.865 (4)143 (3)
C3—H3A···O20.932.392.721 (4)101
C9—H9A···O10.932.242.868 (4)125
C19—H19A···O20.932.563.421 (4)154
C19—H19A···O40.932.553.081 (3)117
Symmetry codes: (ii) x, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+5/2; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Y2(C10H6NO2)6(H2O)4]·2H2O
Mr1318.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.623 (2), 16.361 (3), 15.312 (3)
β (°) 106.03 (3)
V3)2798.7 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.565, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
9525, 4898, 3615
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 0.91
No. of reflections4898
No. of parameters412
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Y1—Y1i4.0363 (9)Y1—O42.3245 (19)
Y1—O12.398 (2)Y1—O52.419 (3)
Y1—O1W2.337 (3)Y1—O62.735 (2)
Y1—O22.461 (2)Y1—O3i2.3264 (19)
Y1—O2W2.370 (3)Y1—O6i2.309 (2)
O1—Y1—O1W94.29 (9)O2—Y1—O6139.84 (7)
O1—Y1—O252.93 (7)O2—Y1—O3i126.54 (7)
O1—Y1—O2W71.97 (9)O2—Y1—O6i76.61 (8)
O1—Y1—O4129.52 (7)O2W—Y1—O4142.44 (9)
O1—Y1—O5143.80 (8)O2W—Y1—O572.03 (9)
O1—Y1—O6147.07 (7)O2W—Y1—O6110.45 (8)
O1—Y1—O3i80.64 (7)O2W—Y1—O3i72.74 (8)
O1—Y1—O6i84.75 (8)O2W—Y1—O6i141.84 (9)
O1W—Y1—O273.28 (9)O4—Y1—O583.27 (8)
O1W—Y1—O2W70.79 (9)O4—Y1—O669.39 (7)
O1W—Y1—O476.57 (8)O3i—Y1—O4133.97 (7)
O1W—Y1—O577.31 (9)O4—Y1—O6i75.52 (7)
O1W—Y1—O6117.89 (8)O5—Y1—O649.03 (7)
O1W—Y1—O3i142.91 (8)O3i—Y1—O585.37 (8)
O1W—Y1—O6i142.58 (8)O5—Y1—O6i123.02 (8)
O2—Y1—O2W109.60 (9)O3i—Y1—O669.59 (7)
O2—Y1—O477.23 (7)O6—Y1—O6i74.00 (7)
O2—Y1—O5147.69 (8)O3i—Y1—O6i73.97 (7)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wii0.75 (4)1.99 (4)2.727 (4)168 (3)
O2W—H2WA···O3Wii0.78 (3)2.00 (3)2.751 (4)161 (3)
O3W—H3WA···N2iii0.87 (4)1.84 (4)2.708 (4)172 (4)
O1W—H1WB···N3iv0.78 (4)1.96 (4)2.735 (4)173 (4)
O2W—H2WB···N1v0.78 (4)1.99 (4)2.739 (4)161 (4)
O3W—H3WB···O2Wvi0.67 (4)2.30 (3)2.865 (4)143 (3)
Symmetry codes: (ii) x, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+5/2; (vi) x, y, z1.
 

Acknowledgements

This work was supported by the Sixth Technology Fund for Postgraduates (ykj-2007–1517) of Beijing University of Technology, and the Beijing Municipal Natural Science Foundation (No. 2082004).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Susumu, K. & Joan, R. (2005). Inorg. Chem. 44, 9837–9846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationMorsy, A. & Vratislav, L. (2006). Polyhedron, 25, 1187–1194.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1631-m1632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds