metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[4,4′-imino­dipyridinium [tetra-μ3-oxido-tetra­oxido-di-μ4-phosphato-κ4O:O′:O′′:O′′′-tetra­vanadium(V)]]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 7 November 2008; accepted 17 November 2008; online 22 November 2008)

In the title salt, {(C10H11N3)[V4O8(PO4)2]}n, cubane-like [V4O8]4+ clusters are connected by phosphate anions into anionic [V4P2O16]n2n layers. These aggregate into the three-dimensional structure via N—H⋯O hydrogen-bonding mechanisms imparted by 4,4′-imino­dipyridinium dications situated between the layers.

Related literature

For a nickel vanadate phase incorporating 4,4′-dipyridylamine, see: LaDuca et al. (2001[LaDuca, R. L., Rarig, R. S. & Zubieta, J. (2001). Inorg. Chem. 40, 607-612.]). For a related layered vanadium phosphate solid containing doubly protonated 4,4′-bipyridine cations, see: Shi et al. (2004[Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, Ja. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp.3031-3037.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H11N3)[V4O8(PO4)2]

  • Mr = 694.92

  • Monoclinic, P 21 /n

  • a = 7.4431 (10) Å

  • b = 14.524 (2) Å

  • c = 18.825 (3) Å

  • β = 94.363 (2)°

  • V = 2029.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 173 (2) K

  • 0.20 × 0.20 × 0.04 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.922

  • 21687 measured reflections

  • 4652 independent reflections

  • 3678 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.09

  • 4652 reflections

  • 325 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O10 0.93 (4) 2.14 (4) 2.885 (4) 136 (4)
N1—H1N⋯O9i 0.93 (4) 2.45 (4) 3.018 (5) 119 (4)
N2—H2N⋯O2ii 0.862 (19) 2.35 (2) 3.195 (4) 166 (4)
N3—H3N⋯O8iii 0.90 (5) 2.02 (5) 2.902 (4) 164 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The kinked and hydrogen-bonding capable imine 4,4'-dipyridylamine has proven useful in the construction of novel mixed metal oxide phases (LaDuca et al., 2001). In an attempt to extend this chemistry into a metal phosphate oxide system, yellow plate-like crystals of the title compound (I) were obtained.

The asymmetric unit of (I) comprises a cluster of four pentavalent V atoms, four terminal O atoms, four triply bridging O atoms, two phosphate anions and an unligated 4,4'-iminodipyridinium dication (Fig. 1). Each V atom is octahedrally coordinated, with three µ3O atom donors, two O atoms from two different phosphate anions, and one terminal O atom with a formal V=O double bond. The four V=O groups and four µ3 O atoms form a cubane-type [V4O8]4+ cluster.

Quadruply bridging phosphate anions bridge these cationic clusters into anionic [V4O8(PO4)2]n2n- layers that are situated parallel to the bc-planes (Fig. 2). The phosphate groups bracket rhomboid apertures within the layers, with through-space P···P contact distances of 7.2685 (2) and 7.4431 (2) Å. Adjacent [V4O8(PO4)2]n2n- layers stack in an AB pattern into the 3-D structure by N—H···O hydrogen bonding mediated by the protonated pyridyl-N atoms and the central amine groups of the 4,4'-iminodipyridinium cations situated in the interlamellar regions (Fig. 3).

The overall structure of (I) is very similar to a related phase incorporating doubly protonated 4,4'-bipyridine cations (Shi et al., 2004).

Related literature top

For a nickel vanadate phase incorporating 4,4'-dipyridylamine, see: LaDuca et al. (2001). For a related layered vanadium phosphate solid containing doubly protonated 4,4'-bipyridine cations, see: Shi et al. (2004).

Experimental top

All chemicals were obtained commercially. Vanadium(V) oxide (140 mg, 0.77 mmol) and 4,4'-dipyridylamine (132 mg, 0.77 mmol) and phosphoric acid (526 mg of an 85.5% aqueous solution, 4.56 mmol) were placed into H2O (10 ml ) in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 72 h and was then allowed to cool to room temperature. Yellow plates of (I) were obtained along with a reddish-brown amorphous solid.

Refinement top

All H atoms bound to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N). The largest residual electron density peak of 1.03 e- Å-3 was located 2.25 Å from the H2 atom.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Most H atom positions are shown as gray sticks. Color code: dark blue V, violet P, light blue N, red O, black C, pink H.
[Figure 2] Fig. 2. A single [V4P2O16]n2n- layer in (I).
[Figure 3] Fig. 3. Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of (I) through hydrogen bonding between the inorganic layers and 4,4'-iminodipyridinium cations.
Poly[4,4'-iminodipyridinium [tetra-µ3-oxido-tetraoxidodi-µ4-phosphato- κ4O:O':O'':O'''-tetravanadium(V)]] top
Crystal data top
(C10H11N3)[V4O8(PO4)2]F(000) = 1368
Mr = 694.92Dx = 2.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21687 reflections
a = 7.4431 (10) Åθ = 1.8–28.2°
b = 14.524 (2) ŵ = 2.04 mm1
c = 18.825 (3) ÅT = 173 K
β = 94.363 (2)°Plate, yellow
V = 2029.1 (5) Å30.20 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
4652 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.786, Tmax = 0.922k = 1919
21687 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0382P)2 + 6.7132P]
where P = (Fo2 + 2Fc2)/3
4652 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.03 e Å3
3 restraintsΔρmin = 0.76 e Å3
Crystal data top
(C10H11N3)[V4O8(PO4)2]V = 2029.1 (5) Å3
Mr = 694.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4431 (10) ŵ = 2.04 mm1
b = 14.524 (2) ÅT = 173 K
c = 18.825 (3) Å0.20 × 0.20 × 0.04 mm
β = 94.363 (2)°
Data collection top
Bruker SMART 1K
diffractometer
4652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3678 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.922Rint = 0.047
21687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.03 e Å3
4652 reflectionsΔρmin = 0.76 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.62200 (8)0.45521 (4)0.16868 (3)0.00774 (14)
V20.65671 (8)0.54528 (4)0.33252 (3)0.00778 (14)
V30.91535 (8)0.41272 (4)0.30933 (3)0.00822 (14)
V40.89067 (8)0.58608 (4)0.19276 (3)0.00808 (14)
P10.27074 (12)0.50073 (6)0.25058 (5)0.00875 (19)
P20.74459 (12)0.25121 (6)0.21337 (5)0.00750 (19)
O10.6496 (4)0.53003 (17)0.41627 (14)0.0146 (6)
O20.5880 (3)0.47775 (17)0.08568 (14)0.0141 (6)
O30.9438 (4)0.38002 (18)0.38988 (14)0.0157 (6)
O40.3769 (3)0.45212 (17)0.19477 (14)0.0117 (5)
O50.8869 (3)0.62016 (17)0.11231 (14)0.0144 (5)
O60.6464 (3)0.57326 (16)0.20696 (13)0.0093 (5)
O70.6413 (3)0.32294 (16)0.16610 (13)0.0095 (5)
O80.6626 (3)0.42384 (16)0.29886 (13)0.0093 (5)
O90.3989 (3)0.54901 (17)0.30680 (14)0.0115 (5)
O100.8333 (3)0.18063 (16)0.16577 (13)0.0093 (5)
O110.8977 (3)0.29677 (16)0.26015 (14)0.0101 (5)
O120.6105 (3)0.20382 (16)0.25905 (14)0.0104 (5)
O130.8962 (3)0.54013 (16)0.31834 (14)0.0095 (5)
O140.1453 (3)0.57446 (16)0.21577 (14)0.0114 (5)
O150.1609 (3)0.42794 (16)0.28734 (14)0.0121 (5)
O160.8712 (3)0.46004 (16)0.18407 (13)0.0096 (5)
N11.1851 (5)0.2291 (3)0.1230 (2)0.0247 (8)
H1N1.113 (5)0.212 (3)0.1588 (19)0.030*
N21.5138 (4)0.3207 (2)0.02781 (18)0.0157 (7)
H2N1.481 (6)0.370 (2)0.050 (2)0.019*
N31.9274 (4)0.1840 (2)0.11738 (19)0.0161 (7)
H3N2.016 (6)0.152 (3)0.136 (2)0.019*
C11.1673 (5)0.3154 (3)0.0975 (2)0.0215 (9)
H11.08130.35440.11460.026*
C21.2741 (5)0.3461 (3)0.0469 (2)0.0174 (8)
H21.25930.40540.02870.021*
C31.4072 (5)0.2878 (3)0.0223 (2)0.0128 (7)
C41.4197 (5)0.1975 (3)0.0485 (2)0.0180 (8)
H41.50270.15660.03170.022*
C51.3089 (6)0.1704 (3)0.0990 (2)0.0223 (9)
H51.31820.11100.11720.027*
C61.9152 (5)0.1759 (3)0.0472 (2)0.0183 (8)
H61.99690.13890.02050.022*
C71.7833 (5)0.2217 (3)0.0142 (2)0.0159 (8)
H71.77590.21670.03470.019*
C81.6598 (5)0.2760 (2)0.0557 (2)0.0133 (7)
C91.6813 (5)0.2865 (2)0.1276 (2)0.0128 (7)
H91.60580.32570.15530.015*
C101.8149 (5)0.2386 (2)0.1577 (2)0.0142 (8)
H101.82790.24400.20630.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0072 (3)0.0038 (3)0.0120 (3)0.0000 (2)0.0006 (2)0.0003 (2)
V20.0073 (3)0.0036 (3)0.0125 (3)0.0003 (2)0.0011 (2)0.0002 (2)
V30.0071 (3)0.0039 (3)0.0134 (3)0.0005 (2)0.0003 (2)0.0008 (2)
V40.0074 (3)0.0041 (3)0.0128 (3)0.0002 (2)0.0014 (2)0.0002 (2)
P10.0057 (4)0.0041 (4)0.0165 (5)0.0002 (3)0.0008 (3)0.0012 (3)
P20.0070 (4)0.0027 (4)0.0130 (4)0.0005 (3)0.0012 (3)0.0002 (3)
O10.0196 (14)0.0111 (13)0.0135 (14)0.0002 (10)0.0040 (11)0.0003 (10)
O20.0155 (13)0.0113 (13)0.0151 (14)0.0003 (10)0.0013 (10)0.0011 (10)
O30.0179 (14)0.0113 (13)0.0174 (15)0.0027 (10)0.0014 (11)0.0018 (10)
O40.0079 (12)0.0092 (12)0.0181 (14)0.0003 (10)0.0007 (10)0.0043 (10)
O50.0172 (13)0.0104 (13)0.0160 (14)0.0013 (10)0.0033 (11)0.0007 (10)
O60.0069 (11)0.0049 (11)0.0159 (13)0.0026 (9)0.0003 (9)0.0015 (9)
O70.0102 (12)0.0027 (11)0.0155 (14)0.0013 (9)0.0006 (10)0.0007 (9)
O80.0090 (12)0.0044 (11)0.0147 (13)0.0019 (9)0.0021 (10)0.0006 (9)
O90.0069 (12)0.0094 (12)0.0183 (14)0.0010 (9)0.0019 (10)0.0049 (10)
O100.0094 (12)0.0039 (11)0.0148 (14)0.0007 (9)0.0020 (10)0.0005 (9)
O110.0084 (11)0.0036 (11)0.0180 (14)0.0005 (9)0.0012 (10)0.0002 (10)
O120.0095 (12)0.0052 (11)0.0171 (14)0.0000 (9)0.0046 (10)0.0012 (10)
O130.0081 (12)0.0030 (11)0.0175 (14)0.0002 (9)0.0005 (10)0.0013 (10)
O140.0076 (11)0.0043 (11)0.0229 (15)0.0003 (9)0.0050 (10)0.0035 (10)
O150.0080 (12)0.0054 (12)0.0227 (15)0.0000 (9)0.0004 (10)0.0023 (10)
O160.0090 (12)0.0043 (11)0.0157 (13)0.0016 (9)0.0014 (10)0.0007 (10)
N10.0218 (19)0.033 (2)0.0203 (19)0.0092 (16)0.0068 (15)0.0002 (16)
N20.0182 (16)0.0098 (15)0.0197 (18)0.0021 (13)0.0064 (13)0.0039 (13)
N30.0143 (16)0.0121 (16)0.0224 (19)0.0020 (13)0.0040 (14)0.0034 (13)
C10.0154 (19)0.029 (2)0.021 (2)0.0051 (17)0.0042 (16)0.0103 (17)
C20.0147 (19)0.017 (2)0.021 (2)0.0027 (15)0.0012 (15)0.0053 (16)
C30.0111 (17)0.0165 (18)0.0107 (18)0.0032 (15)0.0006 (13)0.0017 (14)
C40.0168 (19)0.018 (2)0.019 (2)0.0013 (15)0.0033 (16)0.0012 (16)
C50.021 (2)0.023 (2)0.023 (2)0.0058 (17)0.0041 (17)0.0069 (17)
C60.0160 (19)0.0130 (19)0.025 (2)0.0007 (15)0.0037 (16)0.0032 (16)
C70.0170 (19)0.0152 (19)0.015 (2)0.0017 (15)0.0013 (15)0.0018 (15)
C80.0133 (17)0.0080 (17)0.018 (2)0.0048 (14)0.0003 (15)0.0016 (14)
C90.0157 (18)0.0069 (16)0.0155 (19)0.0057 (14)0.0001 (14)0.0002 (14)
C100.0185 (19)0.0073 (17)0.0171 (19)0.0077 (14)0.0030 (15)0.0013 (14)
Geometric parameters (Å, º) top
V1—O21.598 (3)P2—O111.536 (2)
V1—O161.857 (2)P2—O71.538 (2)
V1—O61.863 (2)P2—O101.543 (3)
V1—O41.925 (3)N1—C11.345 (6)
V1—O71.927 (2)N1—C51.357 (6)
V1—O82.488 (3)N1—H1N0.93 (4)
V2—O11.597 (3)N2—C31.364 (5)
V2—O131.824 (2)N2—C81.401 (5)
V2—O81.876 (2)N2—H2N0.862 (19)
V2—O91.944 (2)N3—C61.336 (5)
V2—O10i1.967 (2)N3—C101.346 (5)
V2—O62.394 (3)N3—H3N0.90 (5)
V3—O31.588 (3)C1—C21.362 (6)
V3—O131.865 (2)C1—H10.9300
V3—O81.883 (2)C2—C31.408 (5)
V3—O15ii1.917 (3)C2—H20.9300
V3—O111.921 (2)C3—C41.402 (5)
V3—O162.454 (3)C4—C51.363 (6)
V4—O51.592 (3)C4—H40.9300
V4—O161.843 (2)C5—H50.9300
V4—O61.867 (2)C6—C71.373 (6)
V4—O14ii1.919 (2)C6—H60.9300
V4—O12i1.936 (2)C7—C81.404 (5)
V4—O132.454 (3)C7—H70.9300
P1—O151.533 (3)C8—C91.384 (5)
P1—O41.534 (3)C9—C101.371 (5)
P1—O141.535 (3)C9—H90.9300
P1—O91.539 (3)C10—H100.9300
P2—O121.529 (3)
O2—V1—O16103.13 (13)O12—P2—O11111.02 (15)
O2—V1—O6101.14 (12)O12—P2—O7108.15 (14)
O16—V1—O680.68 (10)O11—P2—O7110.88 (13)
O2—V1—O499.88 (13)O12—P2—O10110.73 (14)
O16—V1—O4156.29 (11)O11—P2—O10106.72 (14)
O6—V1—O489.38 (11)O7—P2—O10109.35 (14)
O2—V1—O7100.73 (12)P1—O4—V1135.36 (15)
O16—V1—O788.06 (10)V1—O6—V495.95 (11)
O6—V1—O7157.17 (11)V1—O6—V2102.74 (11)
O4—V1—O793.27 (11)V4—O6—V2101.53 (10)
O2—V1—O8177.48 (11)P2—O7—V1134.08 (15)
O16—V1—O878.94 (10)V2—O8—V395.40 (11)
O6—V1—O877.68 (10)V2—O8—V198.99 (10)
O4—V1—O877.93 (10)V3—O8—V199.46 (10)
O7—V1—O880.71 (9)P1—O9—V2135.01 (16)
O1—V2—O13104.17 (13)P2—O10—V2iii132.20 (15)
O1—V2—O8101.92 (12)P2—O11—V3132.42 (15)
O13—V2—O882.17 (10)P2—O12—V4iii133.42 (15)
O1—V2—O998.26 (13)V2—O13—V397.83 (11)
O13—V2—O9157.22 (12)V2—O13—V4100.65 (10)
O8—V2—O989.43 (10)V3—O13—V4100.26 (11)
O1—V2—O10i97.26 (12)P1—O14—V4iv135.73 (15)
O13—V2—O10i90.42 (10)P1—O15—V3iv136.61 (15)
O8—V2—O10i160.60 (11)V4—O16—V197.02 (11)
O9—V2—O10i90.66 (10)V4—O16—V3100.90 (11)
O1—V2—O6175.87 (11)V1—O16—V3101.46 (11)
O13—V2—O679.67 (10)C1—N1—C5121.2 (4)
O8—V2—O679.97 (10)C1—N1—H1N118 (3)
O9—V2—O678.02 (10)C5—N1—H1N121 (3)
O10i—V2—O681.07 (9)C3—N2—C8127.3 (3)
O3—V3—O13102.45 (13)C3—N2—H2N118 (3)
O3—V3—O8100.68 (13)C8—N2—H2N114 (3)
O13—V3—O880.90 (10)C6—N3—C10121.6 (3)
O3—V3—O15ii100.40 (13)C6—N3—H3N117 (3)
O13—V3—O15ii89.19 (11)C10—N3—H3N122 (3)
O8—V3—O15ii158.20 (11)N1—C1—C2120.5 (4)
O3—V3—O11101.38 (12)N1—C1—H1119.7
O13—V3—O11155.60 (11)C2—C1—H1119.7
O8—V3—O1189.63 (10)C1—C2—C3119.7 (4)
O15ii—V3—O1191.63 (11)C1—C2—H2120.1
O3—V3—O16178.86 (12)C3—C2—H2120.1
O13—V3—O1678.69 (10)N2—C3—C4123.0 (3)
O8—V3—O1679.38 (10)N2—C3—C2118.5 (4)
O15ii—V3—O1679.66 (10)C4—C3—C2118.4 (4)
O11—V3—O1677.48 (10)C5—C4—C3119.2 (4)
O5—V4—O16103.23 (13)C5—C4—H4120.4
O5—V4—O6102.74 (13)C3—C4—H4120.4
O16—V4—O680.95 (10)N1—C5—C4120.8 (4)
O5—V4—O14ii100.81 (13)N1—C5—H5119.6
O16—V4—O14ii90.13 (10)C4—C5—H5119.6
O6—V4—O14ii156.16 (12)N3—C6—C7120.6 (4)
O5—V4—O12i99.84 (12)N3—C6—H6119.7
O16—V4—O12i156.34 (11)C7—C6—H6119.7
O6—V4—O12i88.95 (10)C6—C7—C8118.8 (4)
O14ii—V4—O12i90.67 (11)C6—C7—H7120.6
O5—V4—O13177.67 (11)C8—C7—H7120.6
O16—V4—O1379.09 (10)C9—C8—N2117.8 (3)
O6—V4—O1377.30 (10)C9—C8—C7119.1 (4)
O14ii—V4—O1379.32 (10)N2—C8—C7123.1 (4)
O12i—V4—O1377.83 (10)C10—C9—C8119.3 (4)
O15—P1—O4108.18 (14)C10—C9—H9120.3
O15—P1—O14110.24 (14)C8—C9—H9120.3
O4—P1—O14110.92 (15)N3—C10—C9120.4 (4)
O15—P1—O9109.13 (15)N3—C10—H10119.8
O4—P1—O9110.85 (14)C9—C10—H10119.8
O14—P1—O9107.51 (14)
O15—P1—O4—V1133.2 (2)O8—V3—O11—P215.9 (2)
O14—P1—O4—V1105.7 (2)O15ii—V3—O11—P2142.4 (2)
O2—V1—O4—P1125.5 (2)O16—V3—O11—P263.3 (2)
O16—V1—O4—P140.4 (4)O11—P2—O12—V4iii81.1 (2)
O6—V1—O4—P124.3 (2)O7—P2—O12—V4iii157.06 (19)
O7—V1—O4—P1133.0 (2)O10—P2—O12—V4iii37.3 (3)
O8—V1—O4—P153.2 (2)O1—V2—O13—V385.66 (14)
O2—V1—O6—V484.30 (13)O8—V2—O13—V314.73 (11)
O16—V1—O6—V417.36 (11)O9—V2—O13—V384.0 (3)
O4—V1—O6—V4175.75 (12)O10i—V2—O13—V3176.74 (12)
O7—V1—O6—V478.8 (3)O6—V2—O13—V395.89 (11)
O8—V1—O6—V497.97 (11)O1—V2—O13—V4172.29 (11)
O2—V1—O6—V2172.42 (11)O8—V2—O13—V487.33 (11)
O16—V1—O6—V285.91 (11)O9—V2—O13—V418.0 (3)
O4—V1—O6—V272.48 (11)O10i—V2—O13—V474.69 (10)
O7—V1—O6—V224.5 (3)O6—V2—O13—V46.16 (8)
O8—V1—O6—V25.31 (8)O3—V3—O13—V284.30 (14)
O5—V4—O6—V184.15 (13)O8—V3—O13—V214.72 (11)
O16—V4—O6—V117.49 (11)O15ii—V3—O13—V2175.22 (12)
O14ii—V4—O6—V186.7 (3)O11—V3—O13—V283.1 (3)
O12i—V4—O6—V1176.00 (12)O16—V3—O13—V295.61 (11)
O13—V4—O6—V198.25 (11)O3—V3—O13—V4173.31 (11)
O5—V4—O6—V2171.52 (11)O8—V3—O13—V487.67 (10)
O16—V4—O6—V286.85 (11)O15ii—V3—O13—V472.83 (11)
O14ii—V4—O6—V217.6 (3)O11—V3—O13—V419.3 (3)
O12i—V4—O6—V271.67 (11)O16—V3—O13—V46.78 (8)
O13—V4—O6—V26.09 (8)O16—V4—O13—V291.04 (12)
O1—V2—O6—V1110.6 (16)O6—V4—O13—V27.98 (11)
O13—V2—O6—V190.76 (11)O14ii—V4—O13—V2176.74 (12)
O8—V2—O6—V16.99 (11)O12i—V4—O13—V283.71 (11)
O9—V2—O6—V184.57 (11)O16—V4—O13—V39.03 (11)
O10i—V2—O6—V1177.17 (12)O6—V4—O13—V392.09 (11)
O13—V2—O6—V48.13 (11)O14ii—V4—O13—V383.19 (11)
O8—V2—O6—V491.91 (11)O12i—V4—O13—V3176.22 (12)
O9—V2—O6—V4176.53 (12)O15—P1—O14—V4iv13.6 (3)
O10i—V2—O6—V483.94 (11)O4—P1—O14—V4iv106.2 (2)
O12—P2—O7—V1104.0 (2)O9—P1—O14—V4iv132.5 (2)
O11—P2—O7—V118.0 (3)O4—P1—O15—V3iv129.8 (2)
O10—P2—O7—V1135.4 (2)O14—P1—O15—V3iv8.3 (3)
O2—V1—O7—P2149.9 (2)O9—P1—O15—V3iv109.6 (2)
O16—V1—O7—P246.9 (2)O5—V4—O16—V183.47 (14)
O6—V1—O7—P213.3 (4)O6—V4—O16—V117.59 (11)
O4—V1—O7—P2109.4 (2)O14ii—V4—O16—V1175.38 (12)
O8—V1—O7—P232.2 (2)O12i—V4—O16—V183.4 (3)
O1—V2—O8—V388.41 (13)O13—V4—O16—V196.29 (11)
O13—V2—O8—V314.51 (11)O5—V4—O16—V3173.38 (11)
O9—V2—O8—V3173.26 (12)O6—V4—O16—V385.56 (11)
O10i—V2—O8—V382.9 (3)O14ii—V4—O16—V372.23 (11)
O6—V2—O8—V395.33 (10)O12i—V4—O16—V319.7 (3)
O1—V2—O8—V1171.10 (11)O13—V4—O16—V36.86 (8)
O13—V2—O8—V185.99 (11)O2—V1—O16—V481.73 (13)
O9—V2—O8—V172.77 (10)O6—V1—O16—V417.64 (11)
O10i—V2—O8—V117.6 (4)O4—V1—O16—V484.0 (3)
O6—V2—O8—V15.16 (8)O7—V1—O16—V4177.70 (12)
O3—V3—O8—V286.84 (13)O8—V1—O16—V496.79 (11)
O13—V3—O8—V214.23 (11)O2—V1—O16—V3175.60 (11)
O15ii—V3—O8—V278.2 (3)O6—V1—O16—V385.03 (11)
O11—V3—O8—V2171.65 (11)O4—V1—O16—V318.7 (3)
O16—V3—O8—V294.32 (10)O7—V1—O16—V375.03 (11)
O3—V3—O8—V1173.09 (11)O8—V1—O16—V35.88 (8)
O13—V3—O8—V185.84 (10)O13—V3—O16—V49.06 (11)
O15ii—V3—O8—V121.9 (3)O8—V3—O16—V491.79 (11)
O11—V3—O8—V171.58 (10)O15ii—V3—O16—V482.19 (11)
O16—V3—O8—V15.75 (8)O11—V3—O16—V4176.21 (12)
O16—V1—O8—V289.44 (11)O13—V3—O16—V190.50 (12)
O6—V1—O8—V26.69 (10)O8—V3—O16—V17.77 (11)
O4—V1—O8—V285.33 (11)O15ii—V3—O16—V1178.25 (12)
O7—V1—O8—V2179.27 (12)O11—V3—O16—V184.23 (11)
O16—V1—O8—V37.62 (10)C5—N1—C1—C20.2 (6)
O6—V1—O8—V390.37 (11)N1—C1—C2—C31.5 (6)
O4—V1—O8—V3177.60 (12)C8—N2—C3—C46.6 (6)
O7—V1—O8—V382.21 (11)C8—N2—C3—C2175.7 (4)
O15—P1—O9—V2106.2 (2)C1—C2—C3—N2179.2 (4)
O4—P1—O9—V212.8 (3)C1—C2—C3—C43.0 (5)
O14—P1—O9—V2134.2 (2)N2—C3—C4—C5179.5 (4)
O1—V2—O9—P1129.9 (2)C2—C3—C4—C52.8 (6)
O13—V2—O9—P140.0 (4)C1—N1—C5—C40.3 (6)
O8—V2—O9—P127.9 (2)C3—C4—C5—N11.2 (6)
O10i—V2—O9—P1132.7 (2)C10—N3—C6—C71.8 (6)
O6—V2—O9—P151.9 (2)N3—C6—C7—C80.9 (6)
O12—P2—O10—V2iii14.4 (2)C3—N2—C8—C9141.3 (4)
O11—P2—O10—V2iii106.6 (2)C3—N2—C8—C738.6 (6)
O7—P2—O10—V2iii133.43 (19)C6—C7—C8—C94.0 (5)
O12—P2—O11—V382.1 (2)C6—C7—C8—N2175.9 (3)
O7—P2—O11—V338.1 (3)N2—C8—C9—C10175.4 (3)
O10—P2—O11—V3157.15 (19)C7—C8—C9—C104.5 (5)
O3—V3—O11—P2116.7 (2)C6—N3—C10—C91.3 (5)
O13—V3—O11—P250.7 (4)C8—C9—C10—N31.9 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O100.93 (4)2.14 (4)2.885 (4)136 (4)
N1—H1N···O9iii0.93 (4)2.45 (4)3.018 (5)119 (4)
N2—H2N···O2v0.86 (2)2.35 (2)3.195 (4)166 (4)
N3—H3N···O8vi0.90 (5)2.02 (5)2.902 (4)164 (4)
Symmetry codes: (iii) x+3/2, y1/2, z+1/2; (v) x+2, y+1, z; (vi) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C10H11N3)[V4O8(PO4)2]
Mr694.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.4431 (10), 14.524 (2), 18.825 (3)
β (°) 94.363 (2)
V3)2029.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.786, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
21687, 4652, 3678
Rint0.047
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.09
No. of reflections4652
No. of parameters325
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.03, 0.76

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O100.93 (4)2.14 (4)2.885 (4)136 (4)
N1—H1N···O9i0.93 (4)2.45 (4)3.018 (5)119 (4)
N2—H2N···O2ii0.862 (19)2.35 (2)3.195 (4)166 (4)
N3—H3N···O8iii0.90 (5)2.02 (5)2.902 (4)164 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLaDuca, R. L., Rarig, R. S. & Zubieta, J. (2001). Inorg. Chem. 40, 607–612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, Ja. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp.3031–3037.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds