metal-organic compounds
2,2′-(Butane-1,4-diyl)diisoquinolinium tetrachloridozincate(II)
aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com
The crystal of the title compound, (C22H22N2)[ZnCl4], consists of 2,2′-(butane-1,4-diyl)diisoquinolinium organic cations and [ZnCl4]2− complex anions. The cation is located across a twofold axis and the ZnII atom of the anion is located on the other twofold axis. The centroid–centroid distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests there is no significant π–π stacking in the crystal structure.
Related literature
For general background, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000). For a related structure, see: Pan & Xu (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808038932/xu2462sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808038932/xu2462Isup2.hkl
A solution of 1,4-dibromine-butane (2.16 g, 0.01 mol) was added to a stirred solution of isoquinoline (2.58 g, 0.02 mol) in 1,4-dioxane (50 ml) at 373 K in a period of 5 h. After cooling to room temperature, the mixture was filtered. The residue was added to an aqueous solution (50 ml) of ZnCl2 (0.01 mol, 1.37 g). After stirring for 2 h, the solution was filtered. Colorless single crystals of the title compound were obtained from the filtrate after 5 weeks.
H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C). The highest peak and deepest hole in the final d-map are 0.35 Å from Cl2 atom and 0.42 Å from Zn1 atom, respectively.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (a) -x, y, 3/2-z; (b) -x, y, 1/2-z]. |
(C22H22N2)[ZnCl4] | F(000) = 1064 |
Mr = 521.61 | Dx = 1.563 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2184 reflections |
a = 10.729 (3) Å | θ = 2.2–26.0° |
b = 11.040 (3) Å | µ = 1.60 mm−1 |
c = 18.955 (4) Å | T = 273 K |
β = 99.179 (9)° | Prism, colorless |
V = 2216.4 (10) Å3 | 0.23 × 0.19 × 0.17 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2172 independent reflections |
Radiation source: fine-focus sealed tube | 1855 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→13 |
Tmin = 0.680, Tmax = 0.760 | k = −13→13 |
12088 measured reflections | l = −23→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.206 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P] where P = (Fo2 + 2Fc2)/3 |
2172 reflections | (Δ/σ)max < 0.001 |
132 parameters | Δρmax = 1.28 e Å−3 |
0 restraints | Δρmin = −1.15 e Å−3 |
(C22H22N2)[ZnCl4] | V = 2216.4 (10) Å3 |
Mr = 521.61 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 10.729 (3) Å | µ = 1.60 mm−1 |
b = 11.040 (3) Å | T = 273 K |
c = 18.955 (4) Å | 0.23 × 0.19 × 0.17 mm |
β = 99.179 (9)° |
Bruker SMART CCD area-detector diffractometer | 2172 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1855 reflections with I > 2σ(I) |
Tmin = 0.680, Tmax = 0.760 | Rint = 0.032 |
12088 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.206 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P] where P = (Fo2 + 2Fc2)/3 |
2172 reflections | Δρmax = 1.28 e Å−3 |
132 parameters | Δρmin = −1.15 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 0.15361 (8) | 0.2500 | 0.0412 (3) | |
Cl2 | 0.12762 (10) | 0.03371 (11) | 0.19106 (6) | 0.0349 (4) | |
Cl1 | 0.12438 (13) | 0.27560 (13) | 0.33123 (8) | 0.0483 (4) | |
N1 | 0.4868 (4) | 0.1136 (4) | 0.3832 (2) | 0.0416 (10) | |
C11 | 0.4355 (5) | 0.1981 (5) | 0.2617 (3) | 0.0449 (13) | |
H11A | 0.4248 | 0.2744 | 0.2854 | 0.054* | |
H11B | 0.3715 | 0.1945 | 0.2193 | 0.054* | |
C3 | 0.6202 (6) | 0.1461 (5) | 0.5206 (3) | 0.0439 (13) | |
C9 | 0.5975 (6) | 0.0584 (5) | 0.4013 (3) | 0.0442 (13) | |
H9 | 0.6286 | 0.0098 | 0.3680 | 0.053* | |
C10 | 0.4120 (6) | 0.0967 (6) | 0.3108 (3) | 0.0463 (13) | |
H10A | 0.3228 | 0.0938 | 0.3143 | 0.056* | |
H10B | 0.4347 | 0.0203 | 0.2910 | 0.056* | |
C1 | 0.4382 (6) | 0.1876 (6) | 0.4311 (3) | 0.0528 (15) | |
H1 | 0.3614 | 0.2265 | 0.4171 | 0.063* | |
C8 | 0.6687 (5) | 0.0723 (5) | 0.4702 (3) | 0.0415 (12) | |
C6 | 0.8489 (7) | 0.0222 (6) | 0.5569 (4) | 0.0583 (16) | |
H6 | 0.9255 | −0.0177 | 0.5700 | 0.070* | |
C7 | 0.7856 (6) | 0.0107 (6) | 0.4893 (3) | 0.0533 (15) | |
H7 | 0.8182 | −0.0368 | 0.4560 | 0.064* | |
C5 | 0.7995 (7) | 0.0947 (6) | 0.6080 (3) | 0.0581 (17) | |
H5 | 0.8434 | 0.1003 | 0.6543 | 0.070* | |
C4 | 0.6894 (7) | 0.1560 (6) | 0.5902 (3) | 0.0524 (15) | |
H4 | 0.6594 | 0.2046 | 0.6239 | 0.063* | |
C2 | 0.5011 (7) | 0.2039 (6) | 0.4980 (3) | 0.0542 (15) | |
H2 | 0.4668 | 0.2532 | 0.5297 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0383 (5) | 0.0406 (6) | 0.0448 (6) | 0.000 | 0.0074 (4) | 0.000 |
Cl2 | 0.0276 (6) | 0.0410 (7) | 0.0363 (6) | 0.0026 (4) | 0.0056 (4) | −0.0100 (5) |
Cl1 | 0.0393 (7) | 0.0457 (8) | 0.0587 (9) | −0.0063 (6) | 0.0043 (6) | −0.0239 (6) |
N1 | 0.038 (2) | 0.046 (3) | 0.040 (2) | 0.000 (2) | 0.0034 (18) | 0.0025 (19) |
C11 | 0.048 (3) | 0.045 (3) | 0.039 (3) | 0.005 (2) | −0.001 (2) | 0.002 (2) |
C3 | 0.047 (3) | 0.044 (3) | 0.041 (3) | −0.005 (2) | 0.008 (2) | 0.000 (2) |
C9 | 0.050 (3) | 0.044 (3) | 0.038 (3) | 0.001 (2) | 0.006 (2) | −0.001 (2) |
C10 | 0.041 (3) | 0.053 (3) | 0.043 (3) | −0.006 (3) | 0.002 (2) | 0.000 (2) |
C1 | 0.045 (3) | 0.061 (4) | 0.054 (4) | 0.006 (3) | 0.012 (3) | 0.003 (3) |
C8 | 0.043 (3) | 0.041 (3) | 0.040 (3) | −0.003 (2) | 0.005 (2) | 0.002 (2) |
C6 | 0.052 (4) | 0.058 (4) | 0.061 (4) | 0.005 (3) | −0.001 (3) | 0.006 (3) |
C7 | 0.056 (4) | 0.056 (4) | 0.045 (3) | 0.009 (3) | 0.000 (3) | 0.001 (3) |
C5 | 0.066 (4) | 0.062 (4) | 0.042 (3) | −0.014 (3) | −0.005 (3) | 0.008 (3) |
C4 | 0.066 (4) | 0.053 (4) | 0.039 (3) | −0.006 (3) | 0.009 (3) | −0.002 (2) |
C2 | 0.060 (4) | 0.060 (4) | 0.045 (3) | 0.009 (3) | 0.016 (3) | −0.005 (3) |
Zn1—Cl1i | 2.3043 (14) | C9—H9 | 0.9300 |
Zn1—Cl1 | 2.3043 (14) | C10—H10A | 0.9700 |
Zn1—Cl2i | 2.3158 (12) | C10—H10B | 0.9700 |
Zn1—Cl2 | 2.3158 (12) | C1—C2 | 1.350 (9) |
N1—C9 | 1.330 (7) | C1—H1 | 0.9300 |
N1—C1 | 1.384 (8) | C8—C7 | 1.423 (9) |
N1—C10 | 1.488 (7) | C6—C7 | 1.357 (9) |
C11—C10 | 1.502 (8) | C6—C5 | 1.423 (10) |
C11—C11ii | 1.520 (12) | C6—H6 | 0.9300 |
C11—H11A | 0.9700 | C7—H7 | 0.9300 |
C11—H11B | 0.9700 | C5—C4 | 1.356 (10) |
C3—C4 | 1.412 (9) | C5—H5 | 0.9300 |
C3—C8 | 1.416 (8) | C4—H4 | 0.9300 |
C3—C2 | 1.431 (9) | C2—H2 | 0.9300 |
C9—C8 | 1.411 (8) | ||
Cl1i—Zn1—Cl1 | 108.47 (9) | N1—C10—H10B | 109.4 |
Cl1i—Zn1—Cl2i | 109.41 (5) | C11—C10—H10B | 109.4 |
Cl1—Zn1—Cl2i | 109.62 (5) | H10A—C10—H10B | 108.0 |
Cl1i—Zn1—Cl2 | 109.62 (5) | C2—C1—N1 | 120.7 (6) |
Cl1—Zn1—Cl2 | 109.41 (5) | C2—C1—H1 | 119.7 |
Cl2i—Zn1—Cl2 | 110.28 (7) | N1—C1—H1 | 119.7 |
C9—N1—C1 | 121.0 (5) | C9—C8—C3 | 118.9 (5) |
C9—N1—C10 | 120.6 (5) | C9—C8—C7 | 120.6 (5) |
C1—N1—C10 | 118.4 (5) | C3—C8—C7 | 120.4 (5) |
C10—C11—C11ii | 115.5 (4) | C7—C6—C5 | 120.7 (6) |
C10—C11—H11A | 108.4 | C7—C6—H6 | 119.7 |
C11ii—C11—H11A | 108.4 | C5—C6—H6 | 119.7 |
C10—C11—H11B | 108.4 | C6—C7—C8 | 119.0 (6) |
C11ii—C11—H11B | 108.4 | C6—C7—H7 | 120.5 |
H11A—C11—H11B | 107.5 | C8—C7—H7 | 120.5 |
C4—C3—C8 | 118.7 (6) | C4—C5—C6 | 121.1 (6) |
C4—C3—C2 | 123.8 (6) | C4—C5—H5 | 119.5 |
C8—C3—C2 | 117.5 (5) | C6—C5—H5 | 119.5 |
N1—C9—C8 | 121.2 (5) | C5—C4—C3 | 120.1 (6) |
N1—C9—H9 | 119.4 | C5—C4—H4 | 120.0 |
C8—C9—H9 | 119.4 | C3—C4—H4 | 120.0 |
N1—C10—C11 | 111.1 (5) | C1—C2—C3 | 120.7 (6) |
N1—C10—H10A | 109.4 | C1—C2—H2 | 119.7 |
C11—C10—H10A | 109.4 | C3—C2—H2 | 119.7 |
C1—N1—C9—C8 | 0.7 (9) | C2—C3—C8—C7 | −179.1 (6) |
C10—N1—C9—C8 | −179.1 (5) | C5—C6—C7—C8 | 0.0 (10) |
C9—N1—C10—C11 | −96.2 (6) | C9—C8—C7—C6 | −177.3 (6) |
C1—N1—C10—C11 | 83.9 (6) | C3—C8—C7—C6 | 1.0 (9) |
C11ii—C11—C10—N1 | 71.4 (7) | C7—C6—C5—C4 | −1.3 (10) |
C9—N1—C1—C2 | −1.2 (9) | C6—C5—C4—C3 | 1.6 (10) |
C10—N1—C1—C2 | 178.6 (6) | C8—C3—C4—C5 | −0.5 (9) |
N1—C9—C8—C3 | 0.3 (8) | C2—C3—C4—C5 | 177.7 (6) |
N1—C9—C8—C7 | 178.6 (6) | N1—C1—C2—C3 | 0.7 (10) |
C4—C3—C8—C9 | 177.6 (5) | C4—C3—C2—C1 | −178.0 (6) |
C2—C3—C8—C9 | −0.7 (8) | C8—C3—C2—C1 | 0.2 (10) |
C4—C3—C8—C7 | −0.8 (9) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C22H22N2)[ZnCl4] |
Mr | 521.61 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 273 |
a, b, c (Å) | 10.729 (3), 11.040 (3), 18.955 (4) |
β (°) | 99.179 (9) |
V (Å3) | 2216.4 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.60 |
Crystal size (mm) | 0.23 × 0.19 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.680, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12088, 2172, 1855 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.206, 1.13 |
No. of reflections | 2172 |
No. of parameters | 132 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.28, −1.15 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
References
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Day, A. I. & Arnold, A. P. (2000). Cucurbiturils and Method for Synthesis,. Patent No. WO/2000/068 232. Google Scholar
Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275–277. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368. CSD CrossRef CAS Web of Science Google Scholar
Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541. Web of Science CSD CrossRef CAS Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing investigation on quinoline compounds, we present here the crystal structure of the compound with multiple functional groups, which can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).
The crystal structure of the title compound (Fig. 1) consists of organic cations and anionic (ZnCl4)2- complexes. The (ZnCl4)2- anion assumes a distorted tetrahedron coordination geometry with Zn–Cl bond distances of 2.3043 (14) Å and 2.3158 (12) Å. The centroids distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests no significant π-π stacking in the crystal structure (Pan & Xu, 2004).