organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(4-Nitro­phen­yl)ethyl­­idene]acetohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bMicroscale Science Institute, Bioengineering Institute, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 28 October 2008; accepted 4 December 2008; online 10 December 2008)

The title compound, C10H11N3O3, was prepared by the reaction of acetohydrazide and 1-(4-nitro­phen­yl)ethanone. The asymmetric unit contains two crystallographically independent mol­ecules. Inversion-related mol­ecules form dimers, in which two N—H⋯O hydrogen bonds generate an inter­molecular R22(8) ring.

Related literature

For possibile analytical applications of Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]). For a related structure, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O3

  • Mr = 221.22

  • Triclinic, [P \overline 1]

  • a = 8.4453 (17) Å

  • b = 9.5438 (19) Å

  • c = 14.820 (3) Å

  • α = 72.66 (3)°

  • β = 77.37 (3)°

  • γ = 75.59 (3)°

  • V = 1090.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6035 measured reflections

  • 4037 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.04

  • 4037 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.84 (3) 2.16 (3) 2.989 (3) 170 (2)
N4—H4A⋯O4ii 0.88 (3) 2.08 (3) 2.952 (3) 172 (2)
C4—H4B⋯N1 0.96 2.42 2.826 (3) 105
C4—H4B⋯O1i 0.96 2.28 3.243 (3) 175
C10—H10A⋯O6iii 0.93 2.49 3.216 (3) 135
C14—H14A⋯N4 0.96 2.41 2.821 (3) 105
C14—H14A⋯O4ii 0.96 2.36 3.317 (3) 173
C16—H16A⋯O3iv 0.93 2.50 3.388 (4) 159
C20—H20A⋯N5 0.93 2.43 2.740 (3) 100
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman, et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

As shown in Fig. 1, the asymmetric unit contains two crystallographically independent molecules. The C3—N2 bond length of 1.277 (3) Å and C13—N5 bond length of 1.287 (3) Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006).

In the structure, there exist C-H···O, C-H···N and N-H···N hydrogen bonding interactions. Inversion-related molecules form a dimer structure, in which two N—H···O hydrogen bonds generate an intermolecular R22(8) ring (Table 1).

Related literature top

For possibile analytical applications of Schiff bases, see: Cimerman et al. (1997). For a related structure, see: Girgis (2006).

Experimental top

A mixture of the acetohydrazide (0.1 mol), and 1-(4-nitrophenyl)ethanone (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

N-bonded H atoms were found from a difference Fourier map and refined freely. C-bonded H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93-0.96 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-[1-(4-Nitrophenyl)ethylidene]acetohydrazide top
Crystal data top
C10H11N3O3Z = 4
Mr = 221.22F(000) = 464
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4453 (17) ÅCell parameters from 1553 reflections
b = 9.5438 (19) Åθ = 2.9–23.0°
c = 14.820 (3) ŵ = 0.10 mm1
α = 72.66 (3)°T = 293 K
β = 77.37 (3)°Block, yellow
γ = 75.59 (3)°0.25 × 0.20 × 0.18 mm
V = 1090.7 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2570 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ϕ and ω scansh = 1010
6035 measured reflectionsk = 811
4037 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.1468P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H11N3O3γ = 75.59 (3)°
Mr = 221.22V = 1090.7 (4) Å3
Triclinic, P1Z = 4
a = 8.4453 (17) ÅMo Kα radiation
b = 9.5438 (19) ŵ = 0.10 mm1
c = 14.820 (3) ÅT = 293 K
α = 72.66 (3)°0.25 × 0.20 × 0.18 mm
β = 77.37 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2570 reflections with I > 2σ(I)
6035 measured reflectionsRint = 0.027
4037 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
4037 reflectionsΔρmin = 0.21 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.6357 (2)0.18317 (19)0.43057 (12)0.0478 (4)
N40.6040 (2)0.3087 (2)0.46328 (13)0.0517 (5)
C200.7190 (3)0.0804 (3)0.37732 (16)0.0553 (6)
H20A0.79130.05770.40760.066*
O40.6882 (2)0.4455 (2)0.53613 (14)0.0762 (6)
C130.5290 (2)0.1642 (2)0.38741 (14)0.0463 (5)
C150.5727 (3)0.0223 (2)0.35793 (14)0.0458 (5)
C180.6510 (3)0.2475 (3)0.30826 (16)0.0540 (6)
C190.7587 (3)0.2144 (3)0.35260 (17)0.0585 (6)
H19A0.85670.28140.36570.070*
C160.4685 (3)0.0151 (3)0.31179 (16)0.0574 (6)
H16A0.37080.05160.29750.069*
N60.6913 (3)0.3924 (2)0.28399 (15)0.0688 (6)
C120.7182 (3)0.3345 (3)0.50456 (18)0.0597 (6)
O60.5902 (3)0.4215 (2)0.24812 (16)0.0985 (7)
O50.8220 (3)0.4769 (2)0.30177 (14)0.0845 (6)
C140.3713 (3)0.2712 (3)0.36615 (19)0.0659 (7)
H14A0.36140.35680.38980.099*
H14B0.27940.22290.39670.099*
H14C0.37190.30280.29820.099*
C170.5074 (3)0.1501 (3)0.28661 (17)0.0629 (6)
H17A0.43700.17380.25560.076*
N20.3467 (2)0.3952 (2)0.09154 (13)0.0517 (5)
O10.0396 (2)0.6256 (2)0.07168 (13)0.0729 (5)
N10.1929 (2)0.4531 (2)0.06573 (15)0.0559 (5)
C100.6576 (3)0.3176 (2)0.14039 (15)0.0505 (5)
H10A0.58930.40610.15070.061*
C30.4436 (3)0.2916 (2)0.05675 (15)0.0497 (5)
C80.9053 (3)0.1382 (3)0.15882 (16)0.0537 (6)
C50.6075 (3)0.2378 (2)0.09008 (15)0.0468 (5)
C60.7135 (3)0.1075 (3)0.07434 (17)0.0601 (6)
H6A0.68340.05340.04020.072*
C90.8052 (3)0.2683 (2)0.17494 (16)0.0532 (6)
H9A0.83690.32220.20870.064*
C70.8626 (3)0.0568 (3)0.10851 (18)0.0640 (7)
H7A0.93270.03070.09770.077*
C20.0951 (3)0.5678 (3)0.09904 (17)0.0555 (6)
N31.0610 (3)0.0837 (3)0.19712 (18)0.0759 (6)
C10.1551 (3)0.6207 (3)0.16819 (19)0.0722 (7)
H1B0.07410.70250.18560.108*
H1C0.25740.65340.13900.108*
H1D0.17240.54020.22440.108*
C40.4032 (3)0.2229 (3)0.0121 (2)0.0814 (9)
H4B0.29380.26950.02640.122*
H4C0.40840.11760.01600.122*
H4D0.48160.23760.07010.122*
O31.0875 (3)0.1457 (3)0.2518 (2)0.1159 (9)
O21.1593 (3)0.0208 (3)0.1728 (2)0.1231 (10)
C110.8785 (3)0.2256 (3)0.5105 (3)0.0922 (10)
H11A0.94740.25740.54100.138*
H11B0.93310.22080.44710.138*
H11C0.85820.12850.54700.138*
H4A0.513 (3)0.378 (3)0.4600 (17)0.071 (8)*
H1A0.162 (3)0.426 (3)0.0248 (17)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0487 (10)0.0441 (10)0.0552 (10)0.0028 (8)0.0128 (8)0.0215 (8)
N40.0477 (11)0.0475 (11)0.0665 (12)0.0030 (9)0.0180 (9)0.0281 (9)
C200.0533 (13)0.0543 (14)0.0685 (15)0.0050 (11)0.0214 (11)0.0269 (12)
O40.0687 (11)0.0712 (12)0.1096 (14)0.0064 (9)0.0348 (10)0.0562 (11)
C130.0445 (11)0.0492 (13)0.0455 (11)0.0056 (10)0.0105 (9)0.0132 (10)
C150.0492 (12)0.0451 (12)0.0441 (11)0.0079 (10)0.0100 (9)0.0122 (9)
C180.0669 (15)0.0476 (13)0.0536 (13)0.0128 (11)0.0091 (11)0.0209 (10)
C190.0583 (14)0.0495 (14)0.0731 (15)0.0017 (11)0.0171 (12)0.0262 (12)
C160.0570 (13)0.0577 (14)0.0645 (14)0.0059 (11)0.0239 (11)0.0204 (12)
N60.0906 (17)0.0570 (14)0.0680 (13)0.0219 (13)0.0070 (12)0.0275 (11)
C120.0513 (13)0.0621 (15)0.0749 (16)0.0020 (11)0.0226 (12)0.0328 (13)
O60.1239 (17)0.0867 (15)0.1170 (17)0.0298 (13)0.0324 (14)0.0567 (13)
O50.0999 (16)0.0583 (12)0.0976 (15)0.0030 (11)0.0112 (12)0.0367 (11)
C140.0587 (15)0.0656 (16)0.0808 (17)0.0078 (12)0.0275 (13)0.0345 (13)
C170.0732 (16)0.0644 (16)0.0653 (15)0.0189 (13)0.0224 (13)0.0250 (13)
N20.0469 (10)0.0518 (11)0.0593 (11)0.0039 (9)0.0174 (9)0.0169 (9)
O10.0565 (10)0.0775 (12)0.0890 (12)0.0072 (9)0.0307 (9)0.0306 (10)
N10.0523 (11)0.0576 (12)0.0642 (12)0.0025 (9)0.0227 (10)0.0222 (10)
C100.0500 (13)0.0439 (12)0.0622 (13)0.0045 (10)0.0143 (10)0.0204 (10)
C30.0524 (13)0.0453 (13)0.0557 (13)0.0062 (10)0.0169 (10)0.0164 (10)
C80.0481 (12)0.0546 (14)0.0582 (13)0.0047 (11)0.0146 (10)0.0141 (11)
C50.0485 (12)0.0460 (12)0.0483 (12)0.0071 (10)0.0115 (9)0.0148 (10)
C60.0635 (15)0.0550 (14)0.0718 (15)0.0016 (12)0.0231 (12)0.0330 (12)
C90.0518 (13)0.0522 (14)0.0634 (14)0.0092 (11)0.0140 (11)0.0237 (11)
C70.0594 (15)0.0549 (15)0.0794 (17)0.0070 (12)0.0170 (12)0.0305 (13)
C20.0506 (13)0.0542 (14)0.0624 (14)0.0043 (11)0.0173 (11)0.0148 (11)
N30.0552 (13)0.0743 (16)0.1008 (18)0.0038 (12)0.0305 (12)0.0271 (13)
C10.0635 (15)0.0743 (18)0.0880 (19)0.0043 (13)0.0270 (14)0.0383 (15)
C40.0746 (18)0.087 (2)0.105 (2)0.0091 (15)0.0418 (16)0.0579 (18)
O30.0844 (15)0.132 (2)0.159 (2)0.0139 (14)0.0718 (15)0.0699 (18)
O20.0765 (14)0.1116 (19)0.196 (3)0.0364 (14)0.0630 (16)0.0769 (19)
C110.0635 (17)0.089 (2)0.148 (3)0.0211 (15)0.0522 (18)0.070 (2)
Geometric parameters (Å, º) top
N5—C131.287 (3)N1—C21.349 (3)
N5—N41.368 (2)N1—H1A0.83 (2)
N4—C121.353 (3)C10—C91.372 (3)
N4—H4A0.88 (3)C10—C51.397 (3)
C20—C191.376 (3)C10—H10A0.9300
C20—C151.398 (3)C3—C51.489 (3)
C20—H20A0.9300C3—C41.500 (3)
O4—C121.231 (3)C8—C91.371 (3)
C13—C151.481 (3)C8—C71.376 (3)
C13—C141.493 (3)C8—N31.460 (3)
C15—C161.391 (3)C5—C61.389 (3)
C18—C171.367 (3)C6—C71.380 (3)
C18—C191.374 (3)C6—H6A0.9300
C18—N61.472 (3)C9—H9A0.9300
C19—H19A0.9300C7—H7A0.9300
C16—C171.389 (3)C2—C11.492 (3)
C16—H16A0.9300N3—O21.218 (3)
N6—O61.222 (3)N3—O31.219 (3)
N6—O51.223 (3)C1—H1B0.9600
C12—C111.489 (3)C1—H1C0.9600
C14—H14A0.9600C1—H1D0.9600
C14—H14B0.9600C4—H4B0.9600
C14—H14C0.9600C4—H4C0.9600
C17—H17A0.9300C4—H4D0.9600
N2—C31.277 (3)C11—H11A0.9600
N2—N11.368 (3)C11—H11B0.9600
O1—C21.232 (3)C11—H11C0.9600
C13—N5—N4119.06 (18)C5—C10—H10A119.3
C12—N4—N5119.98 (19)N2—C3—C5115.09 (19)
C12—N4—H4A114.2 (17)N2—C3—C4125.2 (2)
N5—N4—H4A125.8 (17)C5—C3—C4119.7 (2)
C19—C20—C15121.5 (2)C9—C8—C7122.0 (2)
C19—C20—H20A119.2C9—C8—N3118.9 (2)
C15—C20—H20A119.2C7—C8—N3119.1 (2)
N5—C13—C15114.65 (18)C6—C5—C10117.9 (2)
N5—C13—C14125.5 (2)C6—C5—C3122.1 (2)
C15—C13—C14119.81 (19)C10—C5—C3120.00 (19)
C16—C15—C20117.6 (2)C7—C6—C5121.2 (2)
C16—C15—C13121.3 (2)C7—C6—H6A119.4
C20—C15—C13121.07 (18)C5—C6—H6A119.4
C17—C18—C19121.9 (2)C8—C9—C10118.8 (2)
C17—C18—N6119.2 (2)C8—C9—H9A120.6
C19—C18—N6118.9 (2)C10—C9—H9A120.6
C18—C19—C20118.9 (2)C8—C7—C6118.7 (2)
C18—C19—H19A120.6C8—C7—H7A120.7
C20—C19—H19A120.6C6—C7—H7A120.7
C17—C16—C15121.3 (2)O1—C2—N1119.6 (2)
C17—C16—H16A119.4O1—C2—C1122.2 (2)
C15—C16—H16A119.4N1—C2—C1118.3 (2)
O6—N6—O5123.9 (2)O2—N3—O3122.8 (2)
O6—N6—C18117.5 (2)O2—N3—C8118.8 (2)
O5—N6—C18118.5 (2)O3—N3—C8118.4 (2)
O4—C12—N4120.0 (2)C2—C1—H1B109.5
O4—C12—C11121.8 (2)C2—C1—H1C109.5
N4—C12—C11118.2 (2)H1B—C1—H1C109.5
C13—C14—H14A109.5C2—C1—H1D109.5
C13—C14—H14B109.5H1B—C1—H1D109.5
H14A—C14—H14B109.5H1C—C1—H1D109.5
C13—C14—H14C109.5C3—C4—H4B109.5
H14A—C14—H14C109.5C3—C4—H4C109.5
H14B—C14—H14C109.5H4B—C4—H4C109.5
C18—C17—C16118.8 (2)C3—C4—H4D109.5
C18—C17—H17A120.6H4B—C4—H4D109.5
C16—C17—H17A120.6H4C—C4—H4D109.5
C3—N2—N1120.00 (19)C12—C11—H11A109.5
C2—N1—N2119.4 (2)C12—C11—H11B109.5
C2—N1—H1A118.7 (16)H11A—C11—H11B109.5
N2—N1—H1A121.5 (16)C12—C11—H11C109.5
C9—C10—C5121.4 (2)H11A—C11—H11C109.5
C9—C10—H10A119.3H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (3)2.16 (3)2.989 (3)170 (2)
N4—H4A···O4ii0.88 (3)2.08 (3)2.952 (3)172 (2)
C4—H4B···N10.962.422.826 (3)105
C4—H4B···O1i0.962.283.243 (3)175
C10—H10A···O6iii0.932.493.216 (3)135
C14—H14A···N40.962.412.821 (3)105
C14—H14A···O4ii0.962.363.317 (3)173
C16—H16A···O3iv0.932.503.388 (4)159
C20—H20A···N50.932.432.740 (3)100
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H11N3O3
Mr221.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4453 (17), 9.5438 (19), 14.820 (3)
α, β, γ (°)72.66 (3), 77.37 (3), 75.59 (3)
V3)1090.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6035, 4037, 2570
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.04
No. of reflections4037
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (3)2.16 (3)2.989 (3)170 (2)
N4—H4A···O4ii0.88 (3)2.08 (3)2.952 (3)172 (2)
C4—H4B···N10.962.422.826 (3)105
C4—H4B···O1i0.962.283.243 (3)175
C10—H10A···O6iii0.932.493.216 (3)135
C14—H14A···N40.962.412.821 (3)105
C14—H14A···O4ii0.962.363.317 (3)173
C16—H16A···O3iv0.932.503.388 (4)159
C20—H20A···N50.932.432.740 (3)100
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds