organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,8,10-Tetra­oxa-3,9-di­thia­spiro­[5.5]undecane 3,9-dioxide

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 30 October 2008; accepted 9 November 2008; online 6 December 2008)

The asymmetric unit of the title compound, C5H8O6S2, consists of two spiro­[5.5]undecane mol­ecules. The nonplanar six-membered rings adopt chair conformations. In the crystal structure, weak inter­molecular C—H⋯O inter­actions, together with close O⋯S contacts in the range 3.308 (3)–3.315 (3) Å, stabilize the packing.

Related literature

For background to the use of the title compound in the synthesis of pesticides, see: Jermy & Pandurangan (2005[Jermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185-192.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8O6S2

  • Mr = 228.25

  • Orthorhombic, P b n 21

  • a = 6.0489 (5) Å

  • b = 12.8431 (11) Å

  • c = 21.5830 (18) Å

  • V = 1676.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 (2) K

  • 0.25 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.890

  • 8878 measured reflections

  • 1604 independent reflections

  • 1531 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.07

  • 1604 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1497 Friedel pairs

  • Flack parameter: 0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O6i 0.97 2.53 3.343 (4) 141
C10—H10A⋯O9i 0.97 2.57 3.375 (4) 141
C3—H3B⋯O3ii 0.97 2.71 3.610 (4) 155
C9—H9A⋯O2iii 0.97 2.72 3.635 (4) 159
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation into pentaerythritol compounds, we present an important intermediate in the synthesis of pesticides (Jermy & Pandurangan, 2005). The crystal structure determination of (I) has been carried out in order to elucidate the molecular conformation.

The crystal structure of the title compound, (I), consists of two spiro[5,5]undecane molecules (Fig. 1), in which the bond lengths are within normal ranges (Allen et al., 1987). The four six-membered rings are not planar and adopt chair conformations, with a total puckering amplitude, QT, of 0.607 (2) Å.

In the crystal structure, weak intermolecular C—H···O interactions, Table 1, together with close O5···S2 [dO···S = 3.315 (3)] and O6···S3 [dO···S = 3.308 (3)] contacts stabilize the packing.

Related literature top

For background to the use of the title compound in the synthesis of pesticides, see: Jermy & Pandurangan (2005). For ring conformation puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of thionyl chloride 30 ml (13.6 g 0.1 mol) in CH2Cl2 (30 ml) was added to a stirred solution of pentaerythritol (13.6 g 0.1 mol) in CH2Cl2 (50 ml) at room temperature for 24 h, and was then heated to reflux for 5 h. The resulting solution was evaporated to dryness under reduced pressure and the white product washed with warm water, the mixture filtered and the residue dissolved in 80 ml boiling distilled water then cooled. Single crystals of (I) were obtained after several days.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,9-dioxide top
Crystal data top
C5H8O6S2F(000) = 944
Mr = 228.25Dx = 1.808 Mg m3
Orthorhombic, Pbn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2abCell parameters from 1606 reflections
a = 6.0489 (5) Åθ = 1.9–25.5°
b = 12.8431 (11) ŵ = 0.63 mm1
c = 21.5830 (18) ÅT = 293 K
V = 1676.7 (2) Å3Prism, colourless
Z = 80.25 × 0.23 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1604 independent reflections
Radiation source: fine-focus sealed tube1531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.858, Tmax = 0.890k = 1515
8878 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.284P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1604 reflectionsΔρmax = 0.29 e Å3
235 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), with 1497 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C5H8O6S2V = 1676.7 (2) Å3
Mr = 228.25Z = 8
Orthorhombic, Pbn21Mo Kα radiation
a = 6.0489 (5) ŵ = 0.63 mm1
b = 12.8431 (11) ÅT = 293 K
c = 21.5830 (18) Å0.25 × 0.23 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1531 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.890Rint = 0.028
8878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.29 e Å3
S = 1.07Δρmin = 0.41 e Å3
1604 reflectionsAbsolute structure: Flack (1983), with 1497 Friedel pairs
235 parametersAbsolute structure parameter: 0.09 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5760 (5)0.8962 (2)0.21898 (13)0.0267 (6)
C20.3243 (5)0.8908 (2)0.21098 (16)0.0320 (7)
H2A0.28030.93250.17560.038*
H2B0.25250.91890.24750.038*
C30.6435 (5)0.8264 (3)0.27315 (14)0.0336 (7)
H3A0.58370.85470.31130.040*
H3B0.80330.82580.27670.040*
C40.6446 (5)1.0070 (2)0.23563 (14)0.0331 (7)
H4A0.80111.00840.24530.040*
H4B0.56411.02960.27210.040*
C50.6937 (6)0.8619 (3)0.15935 (16)0.0332 (7)
H5A0.64170.79340.14720.040*
H5B0.85160.85760.16670.040*
C60.0841 (5)0.8707 (2)0.04429 (13)0.0282 (6)
C70.1496 (6)0.7587 (3)0.06034 (15)0.0380 (7)
H7A0.30620.75610.06990.046*
H7B0.06890.73630.09680.046*
C80.2024 (6)0.9046 (3)0.01531 (15)0.0317 (7)
H8A0.15250.97340.02730.038*
H8B0.36050.90770.00810.038*
C90.1562 (5)0.9395 (3)0.09843 (15)0.0366 (7)
H9A0.09910.91070.13680.044*
H9B0.31630.93970.10100.044*
C100.1658 (5)0.8766 (2)0.03668 (16)0.0344 (7)
H10A0.21050.83580.00100.041*
H10B0.23720.84770.07310.041*
O10.2555 (4)0.7835 (2)0.20175 (13)0.0391 (6)
O20.5638 (4)0.72017 (16)0.26492 (13)0.0393 (6)
O30.1990 (5)0.7482 (2)0.31274 (14)0.0511 (7)
O40.6503 (4)0.93608 (18)0.10970 (10)0.0384 (5)
O50.6001 (4)1.07751 (17)0.18509 (11)0.0383 (5)
O60.9676 (4)1.0477 (2)0.13830 (14)0.0483 (7)
O70.1022 (4)0.68874 (18)0.00930 (12)0.0414 (6)
O80.1555 (4)0.83071 (19)0.06494 (10)0.0380 (5)
O90.4707 (4)0.7194 (2)0.03627 (15)0.0532 (7)
O100.0777 (4)1.04518 (17)0.09141 (13)0.0430 (6)
O110.2349 (4)0.9845 (2)0.02836 (13)0.0424 (6)
O120.2837 (5)1.0115 (2)0.13974 (14)0.0618 (9)
S10.73630 (15)1.05361 (7)0.12165 (4)0.0379 (2)
S20.29956 (16)0.70421 (6)0.25830 (4)0.0384 (2)
S30.24084 (16)0.71310 (7)0.05390 (5)0.0399 (2)
S40.18731 (16)1.06085 (7)0.08585 (5)0.0446 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (15)0.0307 (15)0.0239 (14)0.0010 (11)0.0020 (11)0.0003 (11)
C20.0286 (17)0.0333 (17)0.0340 (17)0.0035 (12)0.0030 (13)0.0055 (13)
C30.0327 (16)0.0354 (17)0.0325 (17)0.0003 (13)0.0040 (12)0.0063 (12)
C40.0368 (17)0.0334 (17)0.0292 (14)0.0013 (13)0.0011 (14)0.0015 (12)
C50.0360 (17)0.0324 (15)0.0311 (16)0.0027 (13)0.0013 (14)0.0006 (14)
C60.0305 (16)0.0303 (16)0.0240 (14)0.0022 (12)0.0025 (12)0.0006 (11)
C70.0466 (19)0.0381 (18)0.0295 (15)0.0005 (15)0.0001 (15)0.0056 (14)
C80.0369 (18)0.0316 (16)0.0265 (15)0.0014 (13)0.0059 (12)0.0014 (12)
C90.0383 (18)0.0416 (17)0.0298 (16)0.0040 (14)0.0015 (14)0.0038 (14)
C100.0281 (17)0.0380 (18)0.0370 (17)0.0043 (13)0.0031 (14)0.0091 (14)
O10.0367 (14)0.0426 (14)0.0380 (14)0.0083 (9)0.0122 (9)0.0059 (11)
O20.0417 (14)0.0312 (12)0.0451 (13)0.0043 (9)0.0050 (11)0.0058 (10)
O30.0535 (16)0.0548 (17)0.0450 (15)0.0016 (13)0.0126 (12)0.0107 (12)
O40.0460 (14)0.0413 (12)0.0278 (11)0.0029 (11)0.0013 (10)0.0014 (10)
O50.0423 (13)0.0308 (12)0.0418 (12)0.0034 (9)0.0036 (11)0.0016 (10)
O60.0351 (13)0.0505 (14)0.0594 (17)0.0048 (11)0.0049 (12)0.0102 (12)
O70.0505 (15)0.0306 (12)0.0432 (13)0.0041 (10)0.0035 (12)0.0017 (10)
O80.0489 (14)0.0418 (13)0.0232 (10)0.0043 (10)0.0018 (10)0.0021 (9)
O90.0399 (15)0.0535 (16)0.0663 (19)0.0066 (12)0.0044 (14)0.0147 (13)
O100.0471 (14)0.0375 (12)0.0445 (14)0.0105 (10)0.0045 (13)0.0094 (10)
O110.0392 (15)0.0431 (14)0.0450 (15)0.0095 (10)0.0050 (10)0.0082 (12)
O120.071 (2)0.0582 (19)0.056 (2)0.0121 (15)0.0297 (15)0.0165 (15)
S10.0379 (5)0.0403 (4)0.0355 (5)0.0005 (4)0.0027 (3)0.0106 (4)
S20.0431 (4)0.0326 (4)0.0397 (5)0.0040 (3)0.0036 (4)0.0059 (4)
S30.0417 (5)0.0397 (5)0.0382 (5)0.0028 (3)0.0022 (3)0.0106 (4)
S40.0476 (5)0.0371 (5)0.0492 (6)0.0018 (4)0.0103 (5)0.0122 (4)
Geometric parameters (Å, º) top
C1—C41.526 (4)C7—H7B0.9700
C1—C31.528 (4)C8—O81.458 (4)
C1—C21.534 (4)C8—H8A0.9700
C1—C51.535 (4)C8—H8B0.9700
C2—O11.454 (4)C9—O101.446 (4)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—O21.458 (4)C10—O111.458 (4)
C3—H3A0.9700C10—H10A0.9700
C3—H3B0.9700C10—H10B0.9700
C4—O51.443 (4)O1—S21.612 (3)
C4—H4A0.9700O2—S21.618 (3)
C4—H4B0.9700O3—S21.439 (3)
C5—O41.458 (4)O4—S11.617 (2)
C5—H5A0.9700O5—S11.627 (3)
C5—H5B0.9700O6—S11.446 (3)
C6—C101.522 (4)O7—S31.632 (3)
C6—C91.528 (4)O8—S31.614 (3)
C6—C71.532 (4)O9—S31.444 (3)
C6—C81.535 (4)O10—S41.620 (3)
C7—O71.450 (4)O11—S41.608 (3)
C7—H7A0.9700O12—S41.447 (3)
C4—C1—C3107.1 (2)C6—C7—H7B109.4
C4—C1—C2109.8 (2)H7A—C7—H7B108.0
C3—C1—C2108.9 (2)O8—C8—C6109.9 (2)
C4—C1—C5109.8 (2)O8—C8—H8A109.7
C3—C1—C5110.5 (2)C6—C8—H8A109.7
C2—C1—C5110.7 (3)O8—C8—H8B109.7
O1—C2—C1110.0 (2)C6—C8—H8B109.7
O1—C2—H2A109.7H8A—C8—H8B108.2
C1—C2—H2A109.7O10—C9—C6111.6 (3)
O1—C2—H2B109.7O10—C9—H9A109.3
C1—C2—H2B109.7C6—C9—H9A109.3
H2A—C2—H2B108.2O10—C9—H9B109.3
O2—C3—C1111.5 (2)C6—C9—H9B109.3
O2—C3—H3A109.3H9A—C9—H9B108.0
C1—C3—H3A109.3O11—C10—C6110.2 (2)
O2—C3—H3B109.3O11—C10—H10A109.6
C1—C3—H3B109.3C6—C10—H10A109.6
H3A—C3—H3B108.0O11—C10—H10B109.6
O5—C4—C1110.9 (2)C6—C10—H10B109.6
O5—C4—H4A109.5H10A—C10—H10B108.1
C1—C4—H4A109.5C2—O1—S2116.6 (2)
O5—C4—H4B109.5C3—O2—S2117.12 (19)
C1—C4—H4B109.5C5—O4—S1115.8 (2)
H4A—C4—H4B108.0C4—O5—S1115.05 (18)
O4—C5—C1110.2 (2)C7—O7—S3114.5 (2)
O4—C5—H5A109.6C8—O8—S3116.0 (2)
C1—C5—H5A109.6C9—O10—S4116.69 (19)
O4—C5—H5B109.6C10—O11—S4115.7 (2)
C1—C5—H5B109.6O6—S1—O4107.55 (15)
H5A—C5—H5B108.1O6—S1—O5106.90 (16)
C10—C6—C9109.7 (3)O4—S1—O598.48 (12)
C10—C6—C7109.1 (3)O3—S2—O1107.47 (16)
C9—C6—C7107.2 (3)O3—S2—O2107.21 (16)
C10—C6—C8111.0 (3)O1—S2—O298.65 (12)
C9—C6—C8110.1 (2)O9—S3—O8107.12 (14)
C7—C6—C8109.6 (3)O9—S3—O7106.59 (18)
O7—C7—C6111.0 (3)O8—S3—O797.95 (13)
O7—C7—H7A109.4O12—S4—O11106.32 (16)
C6—C7—H7A109.4O12—S4—O10106.55 (18)
O7—C7—H7B109.4O11—S4—O1099.11 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O6i0.972.533.343 (4)141
C10—H10A···O9i0.972.573.375 (4)141
C3—H3B···O3ii0.972.713.610 (4)155
C9—H9A···O2iii0.972.723.635 (4)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8O6S2
Mr228.25
Crystal system, space groupOrthorhombic, Pbn21
Temperature (K)293
a, b, c (Å)6.0489 (5), 12.8431 (11), 21.5830 (18)
V3)1676.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.25 × 0.23 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.858, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
8878, 1604, 1531
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.07
No. of reflections1604
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41
Absolute structureFlack (1983), with 1497 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT (Bruker, 2002, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O6i0.972.533.343 (4)141.0
C10—H10A···O9i0.972.573.375 (4)140.6
C3—H3B···O3ii0.972.713.610 (4)155.1
C9—H9A···O2iii0.972.723.635 (4)158.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (grant No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (grant No. 2007-005) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185–192.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds