organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bis(4-fluoro­anilino)-3,3′-(3,6-dioxa­octane-1,8-di­yl)diquinazolin-4(3H)-one

aDepartment of Chemistry, Kaili College, Guizhou 556000, People's Republic of China, bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and cDepartment of Chemistry, Xianning Vocational and Technical College, Xianning 437100, People's Republic of China
*Correspondence e-mail: wangx0828@sina.com

(Received 10 November 2008; accepted 3 December 2008; online 10 December 2008)

In the centrosymmetric title compound, C34H30F2N6O4, the dihedral angle between the quinazolinone and fluorobenzene ring planes are 71.00 (2) and 74.94 (2)° and an intra­molecular N—H⋯O interaction stabilizes the conformation. In the crystal, C—H⋯F and C—H⋯O links help to establish the packing.

Related literature

For the biological activity of quinazolinones, see: Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. E. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]); Ding et al., 2004[Ding, M. W., Chen, Y. F. & Huang, N. Y. (2004). Eur. J. Org. Chem. pp. 3872-3878.]. For the crystal structures of other fused heterocyclic derivatives, see: Wang et al. (2006[Wang, X., Zheng, A.-H. & Xu, S.-Z. (2006). Acta Cryst. E62, o4791-o4792.]); Xu et al. (2006[Xu, S.-Z., Hu, Y.-G., Wang, X. & Ding, M.-W. (2006). Acta Cryst. E62, o2229-o2230.]).

[Scheme 1]

Experimental

Crystal data
  • C34H30F2N6O4

  • Mr = 624.64

  • Monoclinic, C 2/c

  • a = 13.923 (3) Å

  • b = 12.509 (3) Å

  • c = 18.726 (4) Å

  • β = 97.08 (3)°

  • V = 3236.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS,inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.991

  • 2834 measured reflections

  • 2834 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.0123

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.06

  • 2834 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.18 2.7954 (19) 128
C16—H16A⋯F1i 0.97 2.54 3.388 (2) 146
C16—H16B⋯O1ii 0.97 2.43 3.377 (2) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Quinazolinones are important heterocycles exhibiting good biological and pharmaceutical activities. Some of these actities inclue antimicrobial, anti-inflammatory, antifungal, anticancer and AMPA receptor antagonistical properties (Shiba et al., 1997 and Ding et al., 2004). In connection with our ongoing heterocyclic synthesis and drug discovery project (Wang et al., 2006; Xu et al., 2006), we obtained the title compound by employing aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with p-Flurophenyl isocyanate and subsequent 2-(2-(2-aminoethoxy)ethoxy)ethanamine under mild conditions. Herein, we present X-ray crystallographic analysis of the title compound, which may be used as a new precursor for obtaining bioactive molecules.

The selected bond lengths and angles are given in parameter see Table 1. In the molecule of the title compound (Fig. 1), the fused rings of quinazolinones are planar, and the phenyl (C1—C6) and (C1a—C6a) rings are twisted with respect to the two quinazolinone ring systems, making dihedral angles of 71.00 (2)° and 74.94 (2)°, respectively. The molecular conformation is stabilized by intermolecular N—H···O and O—H···N hydrogen bonds. In the crystal packing, intramolecular N—H···O and O—H···N hydrogen bonds and intermolecular C—H···F and C—H···O hydrogen bonds (Fig.2, Table 2) link the molecules, helping to stabilize the crystal structure.

Related literature top

For the biological activity of quinazolinones, see: Shiba et al. (1997); Ding et al., 2004. For the crystal structures of other fused heterocyclic derivatives, see: Wang et al. (2006); Xu et al. (2006).

Experimental top

To a solution of iminophosphorane (1.28 g, 3.0 mmol) in anhydrous THF (10 mL) was added p-Fluorophenyl isocyanate (0.41 g, 3.0 mmol) under nitrogen at room temperature. After standing for 10 h at 273-278K, the solvent was removed under reduced pressure and ethyl sther/petroleum ether (1:2, 10ml) was added to precipitate triphenylphosphine oxide. After filtration the solvent was removed to give the carbodiimide, which were used directly without further purification. To the solution of carbodiimide prepared above was added a solution of 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3 mmol) in THF (10 mL). The mixture was stirred for 10 h at room temperature, concentrated under reduced pressure and the recrystallized from a mixed solvent of methanol and dichloromethane (1:2 v/v) at room temperature to give the title compound.

Refinement top

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, N—H = 0.86 Å, Uiso = 1.2Ueq (N) for NH.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for title compound, showing the hydrogen bonds stacking interactions.
2,2'-Bis(4-fluoroanilino)-3,3'-(3,6-dioxaoctane-1,8- diyl)diquinazolin-4(3H)-one top
Crystal data top
C34H30F2N6O4F(000) = 1304
Mr = 624.64Dx = 1.282 Mg m3
Monoclinic, C2/cMelting point: 415 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.923 (3) ÅCell parameters from 3566 reflections
b = 12.509 (3) Åθ = 2.2–28.5°
c = 18.726 (4) ŵ = 0.10 mm1
β = 97.08 (3)°T = 295 K
V = 3236.6 (11) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2834 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.982, Tmax = 0.991k = 014
2834 measured reflectionsl = 022
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.8957P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2834 reflectionsΔρmax = 0.30 e Å3
208 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (9)
Crystal data top
C34H30F2N6O4V = 3236.6 (11) Å3
Mr = 624.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.923 (3) ŵ = 0.10 mm1
b = 12.509 (3) ÅT = 295 K
c = 18.726 (4) Å0.20 × 0.10 × 0.10 mm
β = 97.08 (3)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2263 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.012
2834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
2834 reflectionsΔρmin = 0.16 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24654 (14)0.79492 (18)0.12370 (9)0.0755 (6)
C20.24527 (18)0.85820 (18)0.18204 (11)0.0885 (7)
H20.26390.92950.18080.106*
C30.21577 (17)0.81506 (16)0.24356 (10)0.0807 (6)
H30.21400.85750.28410.097*
C40.18901 (12)0.70941 (14)0.24493 (8)0.0605 (4)
C50.19174 (14)0.64790 (16)0.18485 (9)0.0705 (5)
H50.17400.57630.18580.085*
C60.22039 (15)0.69037 (18)0.12292 (9)0.0771 (6)
H60.22180.64870.08190.093*
C70.21556 (14)0.65123 (13)0.36984 (9)0.0621 (4)
C80.36454 (15)0.65449 (13)0.43630 (9)0.0675 (5)
C90.46390 (16)0.67547 (17)0.44028 (11)0.0822 (6)
H90.48930.70230.40030.099*
C100.52371 (19)0.65675 (19)0.50253 (12)0.0928 (7)
H100.58950.67130.50440.111*
C110.4878 (2)0.61653 (19)0.56277 (12)0.0948 (7)
H110.52920.60410.60480.114*
C120.3909 (2)0.59501 (16)0.56025 (10)0.0852 (6)
H120.36660.56820.60070.102*
C130.32810 (15)0.61330 (13)0.49687 (9)0.0680 (5)
C140.22605 (15)0.58965 (14)0.49317 (9)0.0704 (5)
C150.06541 (15)0.60240 (16)0.42379 (11)0.0761 (6)
H15A0.03500.65770.39240.091*
H15B0.04680.61410.47140.091*
C160.02768 (14)0.49650 (16)0.39706 (11)0.0774 (6)
H16A0.06500.43970.42250.093*
H16B0.03930.48870.40550.093*
C170.00666 (15)0.39575 (15)0.28882 (13)0.0858 (6)
H17A0.07510.39310.29390.103*
H17B0.02410.33310.31210.103*
F10.27593 (11)0.83760 (13)0.06324 (6)0.1146 (6)
N10.15482 (12)0.66559 (12)0.30729 (7)0.0698 (4)
H10.09490.64780.30560.084*
N20.17129 (11)0.61347 (11)0.42748 (7)0.0639 (4)
N70.30664 (12)0.67140 (12)0.37194 (7)0.0676 (4)
O10.18667 (12)0.55312 (13)0.54259 (7)0.0937 (5)
O20.03497 (9)0.48969 (9)0.32193 (7)0.0748 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0723 (11)0.1035 (15)0.0487 (9)0.0327 (10)0.0003 (8)0.0192 (9)
C20.1115 (17)0.0794 (13)0.0736 (12)0.0417 (12)0.0075 (11)0.0167 (10)
C30.1106 (16)0.0716 (12)0.0617 (10)0.0257 (11)0.0181 (10)0.0020 (9)
C40.0631 (10)0.0661 (10)0.0522 (9)0.0140 (8)0.0069 (7)0.0097 (7)
C50.0824 (12)0.0691 (11)0.0603 (10)0.0180 (9)0.0098 (9)0.0049 (8)
C60.0859 (13)0.0933 (14)0.0526 (10)0.0194 (11)0.0099 (9)0.0005 (9)
C70.0863 (12)0.0520 (9)0.0514 (9)0.0073 (8)0.0223 (8)0.0021 (7)
C80.0941 (13)0.0543 (10)0.0550 (9)0.0094 (9)0.0121 (9)0.0040 (7)
C90.0958 (15)0.0788 (13)0.0710 (12)0.0233 (11)0.0065 (11)0.0028 (9)
C100.1032 (17)0.0882 (15)0.0835 (14)0.0154 (12)0.0025 (12)0.0092 (11)
C110.118 (2)0.0860 (15)0.0751 (14)0.0010 (14)0.0111 (13)0.0055 (11)
C120.128 (2)0.0717 (12)0.0567 (10)0.0069 (12)0.0138 (11)0.0024 (9)
C130.0973 (14)0.0537 (9)0.0548 (9)0.0057 (9)0.0162 (9)0.0011 (7)
C140.1018 (15)0.0591 (10)0.0550 (9)0.0125 (9)0.0286 (9)0.0075 (8)
C150.0861 (13)0.0765 (12)0.0737 (11)0.0247 (10)0.0416 (10)0.0188 (9)
C160.0625 (11)0.0819 (13)0.0943 (13)0.0092 (9)0.0359 (10)0.0323 (10)
C170.0731 (12)0.0562 (10)0.1317 (18)0.0043 (9)0.0273 (12)0.0129 (10)
F10.1282 (11)0.1552 (13)0.0596 (7)0.0636 (9)0.0091 (7)0.0307 (7)
N10.0761 (10)0.0793 (10)0.0556 (8)0.0195 (8)0.0152 (7)0.0120 (7)
N20.0824 (10)0.0582 (8)0.0561 (8)0.0061 (7)0.0290 (7)0.0089 (6)
N70.0820 (11)0.0696 (9)0.0527 (8)0.0186 (8)0.0142 (7)0.0019 (6)
O10.1137 (11)0.1071 (11)0.0679 (8)0.0187 (9)0.0419 (8)0.0301 (8)
O20.0723 (8)0.0614 (7)0.0970 (10)0.0068 (6)0.0353 (7)0.0114 (6)
Geometric parameters (Å, º) top
C1—C21.351 (3)C10—H100.9300
C1—C61.357 (3)C11—C121.371 (3)
C1—F11.3597 (19)C11—H110.9300
C2—C31.380 (3)C12—C131.403 (3)
C2—H20.9300C12—H120.9300
C3—C41.374 (3)C13—C141.445 (3)
C3—H30.9300C14—O11.221 (2)
C4—C51.368 (2)C14—N21.397 (2)
C4—N11.4239 (19)C15—N21.474 (2)
C5—C61.379 (2)C15—C161.489 (3)
C5—H50.9300C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—N71.289 (2)C16—O21.426 (2)
C7—N11.369 (2)C16—H16A0.9700
C7—N21.390 (2)C16—H16B0.9700
C8—N71.381 (2)C17—O21.419 (2)
C8—C131.397 (2)C17—C17i1.488 (5)
C8—C91.401 (3)C17—H17A0.9700
C9—C101.367 (3)C17—H17B0.9700
C9—H90.9300N1—H10.8600
C10—C111.384 (3)
C2—C1—C6122.90 (16)C11—C12—H12119.8
C2—C1—F1118.59 (19)C13—C12—H12119.8
C6—C1—F1118.50 (19)C8—C13—C12119.8 (2)
C1—C2—C3118.74 (19)C8—C13—C14119.35 (17)
C1—C2—H2120.6C12—C13—C14120.89 (18)
C3—C2—H2120.6O1—C14—N2119.99 (19)
C4—C3—C2120.08 (19)O1—C14—C13124.83 (18)
C4—C3—H3120.0N2—C14—C13115.17 (15)
C2—C3—H3120.0N2—C15—C16114.13 (15)
C5—C4—C3119.38 (16)N2—C15—H15A108.7
C5—C4—N1120.27 (15)C16—C15—H15A108.7
C3—C4—N1120.29 (16)N2—C15—H15B108.7
C4—C5—C6121.04 (18)C16—C15—H15B108.7
C4—C5—H5119.5H15A—C15—H15B107.6
C6—C5—H5119.5O2—C16—C15108.66 (14)
C1—C6—C5117.86 (18)O2—C16—H16A110.0
C1—C6—H6121.1C15—C16—H16A110.0
C5—C6—H6121.1O2—C16—H16B110.0
N7—C7—N1120.14 (14)C15—C16—H16B110.0
N7—C7—N2124.86 (16)H16A—C16—H16B108.3
N1—C7—N2115.00 (16)O2—C17—C17i109.48 (13)
N7—C8—C13122.25 (18)O2—C17—H17A109.8
N7—C8—C9118.96 (17)C17i—C17—H17A109.8
C13—C8—C9118.75 (18)O2—C17—H17B109.8
C10—C9—C8120.5 (2)C17i—C17—H17B109.8
C10—C9—H9119.8H17A—C17—H17B108.2
C8—C9—H9119.8C7—N1—C4121.22 (15)
C9—C10—C11120.9 (2)C7—N1—H1119.4
C9—C10—H10119.5C4—N1—H1119.4
C11—C10—H10119.5C7—N2—C14120.67 (16)
C12—C11—C10119.8 (2)C7—N2—C15122.16 (15)
C12—C11—H11120.1C14—N2—C15117.09 (14)
C10—C11—H11120.1C7—N7—C8117.59 (15)
C11—C12—C13120.3 (2)C17—O2—C16113.94 (14)
C6—C1—C2—C30.3 (4)C8—C13—C14—N21.5 (2)
F1—C1—C2—C3179.8 (2)C12—C13—C14—N2178.81 (16)
C1—C2—C3—C40.4 (4)N2—C15—C16—O271.71 (19)
C2—C3—C4—C50.1 (3)N7—C7—N1—C44.2 (3)
C2—C3—C4—N1177.47 (19)N2—C7—N1—C4176.50 (15)
C3—C4—C5—C60.4 (3)C5—C4—N1—C7113.3 (2)
N1—C4—C5—C6176.98 (17)C3—C4—N1—C769.4 (2)
C2—C1—C6—C50.2 (3)N7—C7—N2—C142.9 (3)
F1—C1—C6—C5179.32 (17)N1—C7—N2—C14176.34 (15)
C4—C5—C6—C10.5 (3)N7—C7—N2—C15173.61 (17)
N7—C8—C9—C10178.14 (18)N1—C7—N2—C157.1 (2)
C13—C8—C9—C100.5 (3)O1—C14—N2—C7177.52 (16)
C8—C9—C10—C110.2 (3)C13—C14—N2—C73.6 (2)
C9—C10—C11—C120.0 (4)O1—C14—N2—C155.8 (3)
C10—C11—C12—C130.2 (3)C13—C14—N2—C15173.17 (15)
N7—C8—C13—C12178.24 (16)C16—C15—N2—C789.7 (2)
C9—C8—C13—C120.7 (3)C16—C15—N2—C1493.65 (19)
N7—C8—C13—C141.5 (3)N1—C7—N7—C8179.41 (15)
C9—C8—C13—C14179.00 (17)N2—C7—N7—C80.2 (3)
C11—C12—C13—C80.5 (3)C13—C8—N7—C72.4 (3)
C11—C12—C13—C14179.17 (19)C9—C8—N7—C7179.87 (17)
C8—C13—C14—O1179.66 (17)C17i—C17—O2—C16178.87 (17)
C12—C13—C14—O10.1 (3)C15—C16—O2—C17174.79 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.182.7954 (19)128
C16—H16A···F1ii0.972.543.388 (2)146
C16—H16B···O1iii0.972.433.377 (2)164
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC34H30F2N6O4
Mr624.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)13.923 (3), 12.509 (3), 18.726 (4)
β (°) 97.08 (3)
V3)3236.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2834, 2834, 2263
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.06
No. of reflections2834
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.182.7954 (19)128.0
C16—H16A···F1i0.972.543.388 (2)145.8
C16—H16B···O1ii0.972.433.377 (2)164.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

We thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (2001). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Chen, Y. F. & Huang, N. Y. (2004). Eur. J. Org. Chem. pp. 3872–3878.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS,inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. E. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Zheng, A.-H. & Xu, S.-Z. (2006). Acta Cryst. E62, o4791–o4792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, S.-Z., Hu, Y.-G., Wang, X. & Ding, M.-W. (2006). Acta Cryst. E62, o2229–o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds