organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Methyl 4-(1,3-benzo­thia­zol-2-yl­sulfan­yl)-2-(meth­oxy­imino)-3-oxo­butanoate

aCenter for Research and Development of Fine Chemicals, Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, People's Republic of China, and bDepartment of Chemistry, Bijie University, Bijie 551700, People's Republic of China
*Correspondence e-mail: qianzhuli@126.com

(Received 1 December 2008; accepted 3 December 2008; online 6 December 2008)

In the mol­ecular structure of the title compound, C13H12N2O4S2, there is a dihedral angle of 0.41 (13)° between the benzene and thia­zole rings. In the crystal, inversion dimers linked by two C—H⋯O inter­actions together with ππ stacking between the parallel benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.673 (2) Å].

Related literature

For general background to benzothia­zole derivatives and their biological activities, see: Bradshaw et al. (2008[Bradshaw, T. D., Stone, E. L., Trapani, V., leong, C. O., Matthews, C. S., Poele, R. T. & Stevens, M. G. (2008). Breast Cancer Res. Treat. 110, 57-68.]); Moharram (1990[Moharram, H. H. (1990). Arch. Pharm. Res. 13, 14-18.]); Spillane et al. (2007[Spillane, C. B., Fletcher, N. C., Rountree, S. M., Berg, H. V., Chanduloy, S., Morgan, J. L. & Keene, F. R. (2007). J. Biol. Inorg. Chem. 12, 797-807.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O4S2

  • Mr = 324.39

  • Triclinic, [P \overline 1]

  • a = 8.019 (3) Å

  • b = 10.037 (4) Å

  • c = 10.662 (5) Å

  • α = 76.44 (2)°

  • β = 67.997 (14)°

  • γ = 74.964 (15)°

  • V = 759.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 (2) K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.939

  • 7739 measured reflections

  • 2620 independent reflections

  • 2278 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.10

  • 2620 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.55 3.398 (3) 152
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A wide range of biological activities have been attributed to compounds containing benzothiazole moiety such as anticancer (Bradshaw et al., 2008), antibacterial (Moharram et al., 1990) and cytotoxic activity (Spillane et al., 2007), Herein we present the crystal structure of the title benzothiazole derivative (I).

The crystal structure of the title compound (I) is represented in Fig. 1. There is a dihedral angle of 0.41 (13)° between the benzene ring and thiazole ring. In the crystal structure, weak intermolecular C—H···O interactions (Table 1), together with π-π stacking between parallel benzene rings of adjacent molecules stabilize the packing, the centroid-to-centroid distance of two benzene rings is 3.673 (2)Å (symmetry codes: 1 - x,-y,1 - z).

Related literature top

For general background to benzothiazole derivatives and their biological activities, see: Bradshaw et al. (2008); Moharram et al. (1990); Spillane et al. (2007).

Experimental top

A solution of (Z)-methyl-4-bromo-2-(methoxyimino)-3-oxobutanoate 30 ml (2.38 g, 0.01 mol) in methanol (10 ml) was added dropwise to a stirred solution of benzothiazole-2-thiol (1.67 g, 0.01 mol) and sodium hydroxide (0.40 g, 0.01 mol) in water (25 ml). The resulting mixture was stirred at room temperature for 3 h, the mixture was filtered and the residue was dissolved in 30 ml e thanol, Single crystals of (I) were obtained after several days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Z)-Methyl 4-(1,3-benzothiazol-2-ylsulfanyl)-2-(methoxyimino)-3-oxobutanoate top
Crystal data top
C13H12N2O4S2Z = 2
Mr = 324.39F(000) = 336
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.019 (3) ÅCell parameters from 2679 reflections
b = 10.037 (4) Åθ = 2.1–25.0°
c = 10.662 (5) ŵ = 0.37 mm1
α = 76.44 (2)°T = 293 K
β = 67.997 (14)°Block, colourless
γ = 74.964 (15)°0.22 × 0.19 × 0.18 mm
V = 759.3 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2620 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.913, Tmax = 0.939k = 1111
7739 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1857P]
where P = (Fo2 + 2Fc2)/3
2620 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H12N2O4S2γ = 74.964 (15)°
Mr = 324.39V = 759.3 (6) Å3
Triclinic, P1Z = 2
a = 8.019 (3) ÅMo Kα radiation
b = 10.037 (4) ŵ = 0.37 mm1
c = 10.662 (5) ÅT = 293 K
α = 76.44 (2)°0.22 × 0.19 × 0.18 mm
β = 67.997 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2278 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.939Rint = 0.020
7739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
2620 reflectionsΔρmin = 0.27 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2301 (4)0.0381 (3)0.4741 (3)0.0665 (7)
H10.12060.02980.54550.080*
C20.3264 (5)0.0698 (2)0.3972 (3)0.0788 (9)
H20.28030.15140.41850.095*
C30.4890 (4)0.0581 (3)0.2898 (3)0.0735 (8)
H30.54970.13200.24070.088*
C40.5617 (4)0.0593 (3)0.2549 (3)0.0635 (6)
H40.67070.06700.18290.076*
C50.4664 (3)0.1679 (2)0.3314 (2)0.0472 (5)
C60.3029 (3)0.1583 (2)0.4407 (2)0.0452 (5)
C70.3251 (3)0.3681 (2)0.45184 (18)0.0387 (4)
C80.0771 (3)0.5086 (2)0.65173 (19)0.0436 (5)
H8A0.01380.59880.67980.052*
H8B0.00680.47060.63020.052*
C90.1277 (3)0.41269 (19)0.76915 (19)0.0399 (4)
C100.0218 (3)0.3515 (2)0.88308 (19)0.0403 (4)
C110.0216 (3)0.2738 (2)1.0097 (2)0.0443 (5)
C120.4696 (3)0.3219 (3)0.9528 (3)0.0694 (7)
H12A0.55520.27651.03030.104*
H12B0.44540.28090.87340.104*
H12C0.52040.41950.93690.104*
C130.1207 (5)0.0538 (3)1.1217 (3)0.0890 (9)
H13A0.15540.04241.10900.134*
H13B0.01740.06461.20400.134*
H13C0.22150.08281.12870.134*
N10.2241 (2)0.27441 (17)0.50850 (16)0.0448 (4)
N20.1769 (2)0.36936 (18)0.86710 (16)0.0451 (4)
O10.28034 (19)0.38332 (16)0.77643 (15)0.0530 (4)
O20.0143 (3)0.32938 (19)1.09837 (17)0.0774 (5)
O30.0721 (2)0.13890 (16)1.00578 (16)0.0638 (4)
O40.30078 (19)0.30477 (17)0.97942 (15)0.0568 (4)
S10.52463 (7)0.32799 (6)0.31355 (5)0.05263 (18)
S20.27235 (7)0.53273 (5)0.50010 (5)0.04578 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0938 (19)0.0544 (14)0.0641 (14)0.0322 (13)0.0349 (13)0.0011 (11)
C20.138 (3)0.0375 (13)0.093 (2)0.0260 (15)0.074 (2)0.0004 (13)
C30.103 (2)0.0500 (14)0.0869 (19)0.0087 (14)0.0594 (18)0.0267 (13)
C40.0734 (16)0.0570 (14)0.0702 (15)0.0041 (12)0.0340 (13)0.0302 (12)
C50.0562 (12)0.0444 (11)0.0480 (11)0.0042 (9)0.0252 (10)0.0131 (9)
C60.0596 (12)0.0385 (11)0.0474 (11)0.0108 (9)0.0292 (10)0.0048 (8)
C70.0414 (10)0.0418 (10)0.0358 (9)0.0071 (8)0.0154 (8)0.0082 (8)
C80.0432 (11)0.0490 (11)0.0406 (10)0.0008 (9)0.0174 (8)0.0155 (8)
C90.0420 (11)0.0403 (10)0.0438 (10)0.0002 (8)0.0203 (8)0.0174 (8)
C100.0438 (10)0.0413 (10)0.0424 (10)0.0005 (8)0.0213 (8)0.0155 (8)
C110.0440 (11)0.0488 (12)0.0439 (10)0.0041 (9)0.0188 (9)0.0127 (9)
C120.0513 (13)0.0842 (18)0.0843 (17)0.0193 (12)0.0342 (13)0.0082 (14)
C130.127 (3)0.0679 (18)0.0844 (19)0.0117 (17)0.068 (2)0.0130 (15)
N10.0484 (9)0.0457 (10)0.0433 (9)0.0136 (8)0.0150 (7)0.0077 (7)
N20.0446 (9)0.0497 (10)0.0449 (9)0.0089 (7)0.0185 (7)0.0088 (7)
O10.0438 (8)0.0620 (9)0.0594 (9)0.0054 (7)0.0272 (7)0.0094 (7)
O20.1180 (15)0.0696 (11)0.0605 (10)0.0034 (10)0.0516 (10)0.0270 (9)
O30.0931 (12)0.0467 (9)0.0642 (10)0.0046 (8)0.0473 (9)0.0069 (7)
O40.0463 (8)0.0745 (11)0.0546 (9)0.0184 (7)0.0238 (7)0.0000 (7)
S10.0523 (3)0.0552 (4)0.0485 (3)0.0167 (3)0.0037 (2)0.0193 (2)
S20.0515 (3)0.0413 (3)0.0472 (3)0.0109 (2)0.0144 (2)0.0131 (2)
Geometric parameters (Å, º) top
C1—C61.389 (3)C8—H8A0.9700
C1—C21.397 (4)C8—H8B0.9700
C1—H10.9300C9—O11.210 (2)
C2—C31.387 (4)C9—C101.493 (3)
C2—H20.9300C10—N21.279 (2)
C3—C41.362 (4)C10—C111.506 (3)
C3—H30.9300C11—O21.182 (2)
C4—C51.398 (3)C11—O31.315 (3)
C4—H40.9300C12—O41.445 (3)
C5—C61.398 (3)C12—H12A0.9600
C5—S11.736 (2)C12—H12B0.9600
C6—N11.397 (3)C12—H12C0.9600
C7—N11.291 (2)C13—O31.450 (3)
C7—S21.745 (2)C13—H13A0.9600
C7—S11.753 (2)C13—H13B0.9600
C8—C91.507 (3)C13—H13C0.9600
C8—S21.800 (2)N2—O41.386 (2)
C6—C1—C2118.0 (3)O1—C9—C10118.71 (17)
C6—C1—H1121.0O1—C9—C8124.10 (19)
C2—C1—H1121.0C10—C9—C8117.19 (16)
C3—C2—C1121.5 (2)N2—C10—C9118.18 (17)
C3—C2—H2119.3N2—C10—C11124.72 (18)
C1—C2—H2119.3C9—C10—C11117.11 (16)
C4—C3—C2121.3 (2)O2—C11—O3125.40 (19)
C4—C3—H3119.3O2—C11—C10123.41 (19)
C2—C3—H3119.3O3—C11—C10111.17 (16)
C3—C4—C5117.6 (3)O4—C12—H12A109.5
C3—C4—H4121.2O4—C12—H12B109.5
C5—C4—H4121.2H12A—C12—H12B109.5
C6—C5—C4122.2 (2)O4—C12—H12C109.5
C6—C5—S1109.43 (15)H12A—C12—H12C109.5
C4—C5—S1128.4 (2)H12B—C12—H12C109.5
C1—C6—N1124.8 (2)O3—C13—H13A109.5
C1—C6—C5119.4 (2)O3—C13—H13B109.5
N1—C6—C5115.76 (18)H13A—C13—H13B109.5
N1—C7—S2124.48 (15)O3—C13—H13C109.5
N1—C7—S1117.24 (15)H13A—C13—H13C109.5
S2—C7—S1118.25 (11)H13B—C13—H13C109.5
C9—C8—S2113.07 (14)C7—N1—C6109.26 (17)
C9—C8—H8A109.0C10—N2—O4111.87 (15)
S2—C8—H8A109.0C11—O3—C13115.94 (19)
C9—C8—H8B109.0N2—O4—C12109.46 (16)
S2—C8—H8B109.0C5—S1—C788.31 (10)
H8A—C8—H8B107.8C7—S2—C898.95 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.553.398 (3)152
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H12N2O4S2
Mr324.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.019 (3), 10.037 (4), 10.662 (5)
α, β, γ (°)76.44 (2), 67.997 (14), 74.964 (15)
V3)759.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.913, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
7739, 2620, 2278
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.10
No. of reflections2620
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.553.398 (3)151.8
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the National Key Technologies R&D Program of China (2006BAE01A01–13) for supporting this work.

References

First citationBradshaw, T. D., Stone, E. L., Trapani, V., leong, C. O., Matthews, C. S., Poele, R. T. & Stevens, M. G. (2008). Breast Cancer Res. Treat. 110, 57–68.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoharram, H. H. (1990). Arch. Pharm. Res. 13, 14–18.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpillane, C. B., Fletcher, N. C., Rountree, S. M., Berg, H. V., Chanduloy, S., Morgan, J. L. & Keene, F. R. (2007). J. Biol. Inorg. Chem. 12, 797–807.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds