Experimental
Crystal data
C11H14N2S Mr = 206.30 Monoclinic, P 21 /c a = 11.195 (2) Å b = 8.5694 (17) Å c = 11.414 (2) Å β = 108.03 (3)° V = 1041.2 (4) Å3 Z = 4 Mo Kα radiation μ = 0.27 mm−1 T = 293 (2) K 0.25 × 0.20 × 0.18 mm
|
Data collection
Enraf–Nonius CAD-4 diffractometer Absorption correction: none 4554 measured reflections 2393 independent reflections 2214 reflections with I > 2σ(I) Rint = 0.018 3 standard reflections every 100 reflections intensity decay: none
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1A⋯S1i | 0.86 | 2.64 | 3.4359 (17) | 155 | Symmetry code: (i) . | |
Data collection: CAD-4 Software (Enraf–Nonius, 1989
); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989
); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: WinGX (Farrugia, 1999
).
Supporting information
A mixture of the 1-isothiocyanatobenzene (0.1 mol), and pyrrolidine (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.080 mol, yield 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93 and 0.97 Å and N—H = 0.86 Å, and with Uiso=1.2Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
N-Phenylpyrrolidine-1-carbothioamide
top Crystal data top C11H14N2S | F(000) = 440 |
Mr = 206.30 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 11.195 (2) Å | θ = 1.8–27.0° |
b = 8.5694 (17) Å | µ = 0.27 mm−1 |
c = 11.414 (2) Å | T = 293 K |
β = 108.03 (3)° | Block, colourless |
V = 1041.2 (4) Å3 | 0.25 × 0.20 × 0.18 mm |
Z = 4 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.018 |
Radiation source: fine-focus sealed tube | θmax = 27.5°, θmin = 1.9° |
Graphite monochromator | h = −14→14 |
ω scans | k = −11→11 |
4554 measured reflections | l = −14→14 |
2393 independent reflections | 3 standard reflections every 100 reflections |
2214 reflections with I > 2σ(I) | intensity decay: none |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.30 | w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3194P] where P = (Fo2 + 2Fc2)/3 |
2393 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Crystal data top C11H14N2S | V = 1041.2 (4) Å3 |
Mr = 206.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.195 (2) Å | µ = 0.27 mm−1 |
b = 8.5694 (17) Å | T = 293 K |
c = 11.414 (2) Å | 0.25 × 0.20 × 0.18 mm |
β = 108.03 (3)° | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.018 |
4554 measured reflections | 3 standard reflections every 100 reflections |
2393 independent reflections | intensity decay: none |
2214 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.30 | Δρmax = 0.30 e Å−3 |
2393 reflections | Δρmin = −0.46 e Å−3 |
127 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.50030 (4) | 0.12695 (5) | 0.27663 (4) | 0.01992 (15) | |
N2 | 0.34546 (13) | 0.29432 (17) | 0.09833 (13) | 0.0162 (3) | |
N1 | 0.53176 (13) | 0.23342 (19) | 0.06683 (13) | 0.0183 (3) | |
H1A | 0.4979 | 0.2678 | −0.0068 | 0.022* | |
C7 | 0.45718 (15) | 0.2256 (2) | 0.14190 (15) | 0.0152 (3) | |
C5 | 0.66016 (16) | 0.1894 (2) | 0.10058 (16) | 0.0177 (4) | |
C8 | 0.30485 (17) | 0.3898 (2) | −0.01429 (16) | 0.0200 (4) | |
H8A | 0.2822 | 0.3248 | −0.0874 | 0.024* | |
H8B | 0.3704 | 0.4617 | −0.0182 | 0.024* | |
C11 | 0.25255 (16) | 0.2964 (2) | 0.16519 (16) | 0.0203 (4) | |
H11A | 0.2806 | 0.3614 | 0.2382 | 0.024* | |
H11B | 0.2364 | 0.1919 | 0.1892 | 0.024* | |
C4 | 0.70097 (18) | 0.0997 (2) | 0.01900 (18) | 0.0225 (4) | |
H4A | 0.6439 | 0.0646 | −0.0541 | 0.027* | |
C9 | 0.19114 (17) | 0.4771 (2) | −0.00189 (18) | 0.0245 (4) | |
H9A | 0.1312 | 0.4984 | −0.0821 | 0.029* | |
H9B | 0.2158 | 0.5748 | 0.0418 | 0.029* | |
C6 | 0.74613 (17) | 0.2436 (2) | 0.20885 (17) | 0.0241 (4) | |
H6A | 0.7196 | 0.3065 | 0.2624 | 0.029* | |
C2 | 0.91276 (19) | 0.1125 (3) | 0.1562 (2) | 0.0337 (5) | |
H2A | 0.9971 | 0.0854 | 0.1755 | 0.040* | |
C3 | 0.82751 (19) | 0.0628 (2) | 0.0475 (2) | 0.0307 (5) | |
H3A | 0.8551 | 0.0038 | −0.0075 | 0.037* | |
C10 | 0.13624 (17) | 0.3649 (2) | 0.07178 (18) | 0.0243 (4) | |
H10A | 0.0844 | 0.4197 | 0.1124 | 0.029* | |
H10B | 0.0865 | 0.2841 | 0.0193 | 0.029* | |
C1 | 0.87165 (18) | 0.2032 (3) | 0.23648 (19) | 0.0309 (5) | |
H1B | 0.9289 | 0.2375 | 0.3098 | 0.037* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0211 (2) | 0.0247 (3) | 0.0136 (2) | 0.00322 (17) | 0.00489 (16) | 0.00532 (16) |
N2 | 0.0159 (7) | 0.0202 (7) | 0.0125 (6) | 0.0012 (6) | 0.0045 (5) | 0.0028 (5) |
N1 | 0.0162 (7) | 0.0264 (8) | 0.0124 (6) | 0.0025 (6) | 0.0049 (5) | 0.0027 (6) |
C7 | 0.0164 (8) | 0.0160 (8) | 0.0127 (7) | −0.0019 (6) | 0.0036 (6) | −0.0021 (6) |
C5 | 0.0180 (8) | 0.0180 (8) | 0.0175 (8) | 0.0006 (7) | 0.0060 (7) | 0.0036 (6) |
C8 | 0.0204 (8) | 0.0248 (9) | 0.0150 (8) | 0.0033 (7) | 0.0056 (6) | 0.0049 (7) |
C11 | 0.0174 (8) | 0.0270 (10) | 0.0181 (8) | −0.0008 (7) | 0.0078 (7) | 0.0009 (7) |
C4 | 0.0254 (9) | 0.0195 (9) | 0.0248 (9) | 0.0001 (7) | 0.0108 (7) | −0.0009 (7) |
C9 | 0.0204 (9) | 0.0264 (10) | 0.0264 (9) | 0.0051 (7) | 0.0070 (7) | 0.0076 (8) |
C6 | 0.0223 (9) | 0.0304 (10) | 0.0192 (9) | −0.0014 (8) | 0.0057 (7) | 0.0016 (7) |
C2 | 0.0200 (9) | 0.0385 (12) | 0.0436 (12) | 0.0075 (8) | 0.0111 (9) | 0.0164 (10) |
C3 | 0.0298 (10) | 0.0266 (10) | 0.0423 (12) | 0.0080 (8) | 0.0206 (9) | 0.0029 (9) |
C10 | 0.0176 (8) | 0.0299 (10) | 0.0262 (9) | 0.0017 (7) | 0.0078 (7) | 0.0028 (8) |
C1 | 0.0201 (9) | 0.0415 (12) | 0.0264 (10) | −0.0039 (8) | 0.0002 (8) | 0.0098 (9) |
Geometric parameters (Å, º) top S1—C7 | 1.6892 (17) | C4—C3 | 1.388 (3) |
N2—C7 | 1.332 (2) | C4—H4A | 0.9300 |
N2—C11 | 1.468 (2) | C9—C10 | 1.527 (3) |
N2—C8 | 1.472 (2) | C9—H9A | 0.9700 |
N1—C7 | 1.371 (2) | C9—H9B | 0.9700 |
N1—C5 | 1.419 (2) | C6—C1 | 1.385 (3) |
N1—H1A | 0.8600 | C6—H6A | 0.9300 |
C5—C4 | 1.389 (2) | C2—C3 | 1.379 (3) |
C5—C6 | 1.390 (3) | C2—C1 | 1.384 (3) |
C8—C9 | 1.520 (2) | C2—H2A | 0.9300 |
C8—H8A | 0.9700 | C3—H3A | 0.9300 |
C8—H8B | 0.9700 | C10—H10A | 0.9700 |
C11—C10 | 1.522 (3) | C10—H10B | 0.9700 |
C11—H11A | 0.9700 | C1—H1B | 0.9300 |
C11—H11B | 0.9700 | | |
| | | |
C7—N2—C11 | 123.08 (14) | C5—C4—H4A | 120.2 |
C7—N2—C8 | 124.92 (14) | C8—C9—C10 | 103.46 (15) |
C11—N2—C8 | 111.72 (13) | C8—C9—H9A | 111.1 |
C7—N1—C5 | 125.40 (15) | C10—C9—H9A | 111.1 |
C7—N1—H1A | 117.3 | C8—C9—H9B | 111.1 |
C5—N1—H1A | 117.3 | C10—C9—H9B | 111.1 |
N2—C7—N1 | 115.37 (15) | H9A—C9—H9B | 109.0 |
N2—C7—S1 | 122.14 (13) | C1—C6—C5 | 119.56 (19) |
N1—C7—S1 | 122.40 (13) | C1—C6—H6A | 120.2 |
C4—C5—C6 | 119.98 (17) | C5—C6—H6A | 120.2 |
C4—C5—N1 | 118.73 (16) | C3—C2—C1 | 119.36 (19) |
C6—C5—N1 | 121.13 (16) | C3—C2—H2A | 120.3 |
N2—C8—C9 | 103.50 (14) | C1—C2—H2A | 120.3 |
N2—C8—H8A | 111.1 | C2—C3—C4 | 120.80 (19) |
C9—C8—H8A | 111.1 | C2—C3—H3A | 119.6 |
N2—C8—H8B | 111.1 | C4—C3—H3A | 119.6 |
C9—C8—H8B | 111.1 | C11—C10—C9 | 103.05 (15) |
H8A—C8—H8B | 109.0 | C11—C10—H10A | 111.2 |
N2—C11—C10 | 103.34 (14) | C9—C10—H10A | 111.2 |
N2—C11—H11A | 111.1 | C11—C10—H10B | 111.2 |
C10—C11—H11A | 111.1 | C9—C10—H10B | 111.2 |
N2—C11—H11B | 111.1 | H10A—C10—H10B | 109.1 |
C10—C11—H11B | 111.1 | C2—C1—C6 | 120.7 (2) |
H11A—C11—H11B | 109.1 | C2—C1—H1B | 119.6 |
C3—C4—C5 | 119.51 (18) | C6—C1—H1B | 119.6 |
C3—C4—H4A | 120.2 | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.64 | 3.4359 (17) | 155 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data |
Chemical formula | C11H14N2S |
Mr | 206.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.195 (2), 8.5694 (17), 11.414 (2) |
β (°) | 108.03 (3) |
V (Å3) | 1041.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4554, 2393, 2214 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.119, 1.30 |
No. of reflections | 2393 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.46 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.64 | 3.4359 (17) | 155 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
References
Casas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550–1557. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270–5271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514–8519. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Thioamides have received considerable attention in the literature. They are attractive from several points of view in application (Toshiaki et al., 2003). As part of our search for new thioamide compounds we synthesized the title compound (I), and describe its structure here.
In (I) (Fig. 1), the C6—S1 bond length of 1.689 (2)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley et al., 2002). The distance of N1—C6 [1.332 (2) Å] is similar to the distance of reported [1.349 (1) Å] (Casas et al., 2002). The crystal strucure is stabilized by intermolecular C—H···S interactions.