organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-(4-chloro­benzamido)-1,4-naphtho­quinone

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 3 December 2008; accepted 4 December 2008; online 10 December 2008)

The naphthoquinone ring is almost perpendicular [dihedral angle 71.02 (3)°] to the phenyl group of the title compound, C17H9Cl2NO3, while the dihedral angle between the amide group and the 4-chloro­phenyl ring is 21.9 (2)°. The conformation of the N—H and C=O bonds are anti to each other. N—H⋯Cl hydrogen bonds link the mol­ecules into chains in the a-axis direction. In addition, these chains are linked by weak inter­molecular C—H⋯O inter­actions.

Related literature

For similar structures see: Lien et al. (1997[Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111-2120. ]); Huang et al. (2005[Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261-2269. ]); Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170. ]); Copeland et al. (2007[Copeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res. 27, 1537-1546.]); Win et al. (2005[Win, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, pp. 1631-1634.]); Rubin-Preminger et al. (2004[Rubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 323-324.]). For related literature, see: Gowda, Kožíšek et al. (2008[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.]); van Oosten et al. (2008[Oosten, E. M. van, Lough, A. J. & Vasdev, N. (2008). Acta Cryst. E64, o1005.]); Shen et al. (2008[Shen, Q., Yu, S.-Q., Hu, B.-B. & Lu, P. (2008). Acta Cryst. E64, o996.]).

[Scheme 1]

Experimental

Crystal data
  • C17H9Cl2NO3

  • Mr = 346.15

  • Monoclinic, P 21 /c

  • a = 5.6011 (2) Å

  • b = 8.7237 (3) Å

  • c = 29.7957 (9) Å

  • β = 93.504 (3)°

  • V = 1453.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 200 (2) K

  • 0.49 × 0.41 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED (including SCALE3 ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.887, Tmax = 1.000 (expected range = 0.839–0.946)

  • 13882 measured reflections

  • 4842 independent reflections

  • 2832 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 0.93

  • 4842 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Cl1i 0.88 2.89 3.6491 (12) 145
C14—H14A⋯O2ii 0.95 2.40 3.2517 (19) 149
Symmetry codes: (i) x-1, y, z; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED (including SCALE3 ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED (including SCALE3 ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amido and imido derivatives of 3-chloro-1,4-naphthoquinone are well known for their anti-inflammatory, antiplatelet, antiallergic and anticancer activities (Lien et al., 1997; Huang et al., 2005; Bakare et al., 2003; Copeland et al., 2007). The title compound, 2-chloro-3-(p-chlorobenzamido)-1,4-naphthoquinone was obtained as an intermediate in the synthesis of some oxazolo-1,4-naphthoquinone and imido-substituted-1,4-naphthoquinone analogs.

The naphthoquinone ring is almost perpendicular to the phenyl group of the title compound C17H9Cl2NO3, while the dihedral angle betwen the amide group and the 4-chlorophenyl ring is 21.9 (2)° (Fig. 1). The conformation of the N—H and C=O bonds are anti to each other (Gowda, Kožíšek et al., 2008; Gowda, Tokarčík et al., 2008). N—H···Cl hydrogen bonds link the molecules into chains in the a direction. In addition, these chains are linked by weak intermolecular Ar—H···O interactions (Fig. 2, Table 1).

Related literature top

For similar structures see: Lien et al. (1997); Huang et al. (2005); Bakare et al. (2003); Copeland et al. (2007); Win et al. (2005); Rubin-Preminger et al. (2004). For related literature, see: Gowda, Kožíšek et al. (2008); Gowda, Tokarčík et al. (2008); van Oosten et al. (2008); Shen et al. (2008).

Experimental top

A mixture of 2-amino-3-chloro-1,4-naphthoquinone (213 mg, 1.03 mmol) and 4-chloro-benzoylchloride (2 ml) was refluxed for 2 1/2 h (powerstat setting at 70). The reaction mixture was cooled to room temperature. The precipitate was isolated by vacuum filtration and the yellow-grey solid was washed with diethyl ether. The crude was recrystallized from ethanol (20 ml) to obtain a yellow solid (67 mg, 18.8%). Crystals for x-ray study were obtained by recrystallization from methanol.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 Å, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. View of the packing viewed down the a axis. Dashed bonds show weak C—H···O interactions.
2-Chloro-3-(4-chlorobenzamido)-1,4-naphthoquinone top
Crystal data top
C17H9Cl2NO3F(000) = 704
Mr = 346.15Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4629 reflections
a = 5.6011 (2) Åθ = 4.6–32.5°
b = 8.7237 (3) ŵ = 0.46 mm1
c = 29.7957 (9) ÅT = 200 K
β = 93.504 (3)°Plate, pale yellow
V = 1453.16 (8) Å30.49 × 0.41 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
4842 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.5081 pixels mm-1θmax = 32.6°, θmin = 4.6°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1212
Tmin = 0.887, Tmax = 1.000l = 4444
13882 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
4842 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H9Cl2NO3V = 1453.16 (8) Å3
Mr = 346.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6011 (2) ŵ = 0.46 mm1
b = 8.7237 (3) ÅT = 200 K
c = 29.7957 (9) Å0.49 × 0.41 × 0.12 mm
β = 93.504 (3)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
4842 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2832 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.035
13882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.93Δρmax = 0.29 e Å3
4842 reflectionsΔρmin = 0.36 e Å3
208 parameters
Special details top

Experimental. (CrysAlis RED; Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42210 (6)0.13331 (4)0.298854 (11)0.02796 (10)
Cl20.42944 (7)0.05032 (6)0.057164 (13)0.04852 (14)
O10.54644 (18)0.07511 (14)0.39281 (4)0.0401 (3)
O20.26101 (17)0.20745 (14)0.33569 (3)0.0378 (3)
O30.31583 (17)0.12832 (14)0.24103 (3)0.0364 (3)
N0.02512 (19)0.06128 (15)0.27365 (4)0.0273 (3)
H0A0.17860.04150.26890.033*
C10.3653 (2)0.00688 (18)0.38026 (5)0.0275 (3)
C20.2705 (2)0.01309 (17)0.33244 (4)0.0251 (3)
C30.0712 (2)0.06238 (17)0.31773 (4)0.0240 (3)
C40.0749 (2)0.14777 (18)0.34975 (5)0.0264 (3)
C50.0144 (2)0.15604 (18)0.39758 (5)0.0272 (3)
C60.1138 (3)0.2369 (2)0.42817 (5)0.0391 (4)
H6A0.25910.28640.41860.047*
C70.0289 (3)0.2451 (3)0.47288 (5)0.0477 (5)
H7A0.11690.30020.49390.057*
C80.1823 (3)0.1737 (2)0.48705 (5)0.0477 (5)
H8A0.23900.17940.51770.057*
C90.3111 (3)0.0940 (2)0.45660 (5)0.0391 (4)
H9A0.45740.04590.46630.047*
C100.2273 (2)0.08383 (18)0.41170 (5)0.0287 (3)
C110.1070 (3)0.08964 (17)0.23680 (5)0.0263 (3)
C120.0252 (2)0.07098 (17)0.19218 (4)0.0245 (3)
C130.2316 (2)0.01736 (18)0.18635 (5)0.0277 (3)
H13A0.28820.07260.21100.033*
C140.3550 (3)0.02492 (19)0.14462 (5)0.0315 (3)
H14A0.49660.08460.14060.038*
C150.2697 (3)0.05531 (19)0.10907 (5)0.0307 (3)
C160.0608 (3)0.1395 (2)0.11357 (5)0.0319 (3)
H16A0.00200.19130.08850.038*
C170.0618 (3)0.14706 (19)0.15551 (5)0.0295 (3)
H17A0.20580.20450.15920.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02827 (17)0.0286 (2)0.02758 (17)0.00541 (15)0.00608 (13)0.00212 (15)
Cl20.0514 (2)0.0680 (4)0.02503 (18)0.0176 (2)0.00744 (17)0.0029 (2)
O10.0364 (6)0.0500 (8)0.0334 (6)0.0141 (6)0.0034 (5)0.0042 (5)
O20.0321 (5)0.0490 (8)0.0318 (6)0.0152 (5)0.0010 (5)0.0023 (5)
O30.0328 (6)0.0476 (8)0.0288 (5)0.0120 (5)0.0007 (4)0.0072 (5)
N0.0240 (6)0.0383 (8)0.0196 (5)0.0012 (5)0.0019 (5)0.0013 (5)
C10.0266 (7)0.0307 (9)0.0253 (7)0.0004 (6)0.0021 (6)0.0031 (6)
C20.0272 (7)0.0247 (8)0.0239 (7)0.0006 (6)0.0058 (6)0.0012 (6)
C30.0252 (6)0.0278 (8)0.0192 (6)0.0026 (6)0.0028 (5)0.0013 (6)
C40.0278 (7)0.0268 (8)0.0248 (7)0.0014 (6)0.0030 (6)0.0008 (6)
C50.0294 (7)0.0302 (9)0.0220 (6)0.0000 (6)0.0023 (6)0.0005 (6)
C60.0374 (8)0.0517 (12)0.0286 (7)0.0087 (8)0.0041 (7)0.0049 (8)
C70.0502 (10)0.0654 (14)0.0282 (8)0.0078 (9)0.0083 (7)0.0117 (9)
C80.0532 (10)0.0680 (15)0.0214 (7)0.0003 (10)0.0008 (7)0.0049 (8)
C90.0374 (8)0.0562 (12)0.0232 (7)0.0047 (8)0.0026 (6)0.0018 (7)
C100.0296 (7)0.0348 (9)0.0218 (6)0.0004 (6)0.0023 (6)0.0028 (6)
C110.0306 (7)0.0258 (8)0.0228 (7)0.0018 (6)0.0033 (6)0.0012 (6)
C120.0275 (7)0.0260 (8)0.0201 (6)0.0020 (6)0.0034 (5)0.0002 (6)
C130.0321 (7)0.0282 (8)0.0233 (7)0.0034 (6)0.0060 (6)0.0017 (6)
C140.0293 (7)0.0361 (9)0.0291 (7)0.0071 (7)0.0022 (6)0.0014 (7)
C150.0359 (8)0.0359 (9)0.0202 (6)0.0015 (7)0.0008 (6)0.0018 (7)
C160.0347 (8)0.0400 (10)0.0215 (7)0.0064 (7)0.0051 (6)0.0032 (7)
C170.0292 (7)0.0348 (9)0.0246 (7)0.0052 (6)0.0035 (6)0.0009 (6)
Geometric parameters (Å, º) top
Cl1—C21.7105 (15)C7—C81.380 (2)
Cl2—C151.7394 (14)C7—H7A0.9500
O1—C11.2154 (17)C8—C91.381 (2)
O2—C41.2166 (16)C8—H8A0.9500
O3—C111.2167 (16)C9—C101.3932 (19)
N—C111.3834 (18)C9—H9A0.9500
N—C31.3890 (15)C11—C121.4905 (19)
N—H0A0.8800C12—C171.392 (2)
C1—C101.480 (2)C12—C131.392 (2)
C1—C21.4907 (18)C13—C141.3867 (19)
C2—C31.3461 (19)C13—H13A0.9500
C3—C41.494 (2)C14—C151.379 (2)
C4—C51.4829 (19)C14—H14A0.9500
C5—C61.387 (2)C15—C161.381 (2)
C5—C101.391 (2)C16—C171.3903 (19)
C6—C71.389 (2)C16—H16A0.9500
C6—H6A0.9500C17—H17A0.9500
C11—N—C3123.62 (11)C8—C9—C10120.27 (15)
C11—N—H0A118.2C8—C9—H9A119.9
C3—N—H0A118.2C10—C9—H9A119.9
O1—C1—C10121.71 (13)C5—C10—C9119.60 (14)
O1—C1—C2121.20 (14)C5—C10—C1121.47 (12)
C10—C1—C2117.08 (12)C9—C10—C1118.91 (13)
C3—C2—C1122.21 (13)O3—C11—N121.65 (12)
C3—C2—Cl1122.74 (11)O3—C11—C12123.01 (13)
C1—C2—Cl1114.90 (10)N—C11—C12115.34 (12)
C2—C3—N124.82 (13)C17—C12—C13119.63 (12)
C2—C3—C4120.79 (12)C17—C12—C11118.00 (12)
N—C3—C4114.27 (12)C13—C12—C11122.36 (12)
O2—C4—C5122.80 (13)C14—C13—C12120.19 (13)
O2—C4—C3119.01 (12)C14—C13—H13A119.9
C5—C4—C3118.19 (12)C12—C13—H13A119.9
C6—C5—C10120.03 (13)C15—C14—C13119.16 (13)
C6—C5—C4119.89 (13)C15—C14—H14A120.4
C10—C5—C4120.08 (13)C13—C14—H14A120.4
C5—C6—C7119.71 (15)C14—C15—C16121.78 (13)
C5—C6—H6A120.1C14—C15—Cl2119.11 (11)
C7—C6—H6A120.1C16—C15—Cl2119.11 (11)
C8—C7—C6120.49 (16)C15—C16—C17118.79 (14)
C8—C7—H7A119.8C15—C16—H16A120.6
C6—C7—H7A119.8C17—C16—H16A120.6
C7—C8—C9119.89 (14)C16—C17—C12120.37 (13)
C7—C8—H8A120.1C16—C17—H17A119.8
C9—C8—H8A120.1C12—C17—H17A119.8
O1—C1—C2—C3179.54 (14)C6—C5—C10—C1178.31 (15)
C10—C1—C2—C31.3 (2)C4—C5—C10—C12.1 (2)
O1—C1—C2—Cl14.8 (2)C8—C9—C10—C50.8 (3)
C10—C1—C2—Cl1174.35 (11)C8—C9—C10—C1177.93 (16)
C1—C2—C3—N179.82 (14)O1—C1—C10—C5177.09 (15)
Cl1—C2—C3—N4.8 (2)C2—C1—C10—C52.0 (2)
C1—C2—C3—C44.4 (2)O1—C1—C10—C91.6 (2)
Cl1—C2—C3—C4170.99 (11)C2—C1—C10—C9179.29 (14)
C11—N—C3—C249.6 (2)C3—N—C11—O35.2 (2)
C11—N—C3—C4134.37 (14)C3—N—C11—C12175.37 (13)
C2—C3—C4—O2175.91 (14)O3—C11—C12—C1721.9 (2)
N—C3—C4—O20.3 (2)N—C11—C12—C17157.54 (14)
C2—C3—C4—C54.1 (2)O3—C11—C12—C13159.00 (15)
N—C3—C4—C5179.64 (12)N—C11—C12—C1321.6 (2)
O2—C4—C5—C61.2 (2)C17—C12—C13—C142.4 (2)
C3—C4—C5—C6178.73 (15)C11—C12—C13—C14176.72 (14)
O2—C4—C5—C10179.23 (15)C12—C13—C14—C150.4 (2)
C3—C4—C5—C100.8 (2)C13—C14—C15—C161.9 (2)
C10—C5—C6—C70.1 (3)C13—C14—C15—Cl2178.10 (12)
C4—C5—C6—C7179.64 (16)C14—C15—C16—C172.1 (2)
C5—C6—C7—C80.2 (3)Cl2—C15—C16—C17177.92 (13)
C6—C7—C8—C90.3 (3)C15—C16—C17—C120.0 (2)
C7—C8—C9—C100.7 (3)C13—C12—C17—C162.2 (2)
C6—C5—C10—C90.4 (2)C11—C12—C17—C16176.94 (14)
C4—C5—C10—C9179.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Cl1i0.882.893.6491 (12)145
C14—H14A···O2ii0.952.403.2517 (19)149
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H9Cl2NO3
Mr346.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.6011 (2), 8.7237 (3), 29.7957 (9)
β (°) 93.504 (3)
V3)1453.16 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.49 × 0.41 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13882, 4842, 2832
Rint0.035
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 0.93
No. of reflections4842
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Cl1i0.882.893.6491 (12)145.1
C14—H14A···O2ii0.952.403.2517 (19)149.3
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

References

First citationBakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.   Web of Science CrossRef PubMed CAS Google Scholar
First citationCopeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res. 27, 1537–1546.  Web of Science PubMed CAS Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261–2269.   Web of Science CrossRef Google Scholar
First citationLien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111–2120.   Web of Science CrossRef CAS PubMed Google Scholar
First citationOosten, E. M. van, Lough, A. J. & Vasdev, N. (2008). Acta Cryst. E64, o1005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED (including SCALE3 ABSPACK). Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 323–324.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Q., Yu, S.-Q., Hu, B.-B. & Lu, P. (2008). Acta Cryst. E64, o996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWin, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, pp. 1631–1634.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds