organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o203-o204

3,3′-Di­bromo-4,4′-[(1R,2R)-cyclo­hexane-1,2-diyldi­imino]dipent-3-en-2-one

aKey Laboratory of Macrocyclic and Supramolecular Chemistry, of Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China.
*Correspondence e-mail: sci.yqzhang@gzu.edu.cn

(Received 14 December 2008; accepted 18 December 2008; online 24 December 2008)

The asymmetric unit of the title compound, C16H24Br2N2O2, contains two independent mol­ecules, each which has two intra­molecular N—H⋯O hydrogen bonds linking the amine N atoms to the enolic O atoms of the same acacH-imine unit. In the crystal, the mol­ecules are lined up by inter­molecular weak C—H⋯O hydrogen bonds, forming two vertical each other two-dimensional chains along the a axis and b axis of the unit cell, respectively.

Related literature

For general background, see: Bottcher et al. (1997[Bottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem. 36, 2498-2504.]); Bu et al. (1997[Bu, X. R., Jackson, C. R., Derveer, D. V., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991-3001.]); Chimpalee et al. (2000[Chimpalee, N., Chimpalee, D., Keawpasert, P. & Burns, D. T. (2000). Anal. Chim. Acta, 408, 123-125.]); Dominiak et al. (2003[Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Wozniak, K. (2003). Chem. Eur. J. 9, 963-970.]); Gilli et al. (1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.]); McCann et al. (2001[McCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799-2806.]); Na et al. (2002[Na, H. G., Lee, J. W., Choi, J. H., Byun, J. C. & Park, Y. C. (2002). Polyhedron, 21, 917-920.]); Ozkar et al. (2004[Ozkar, S., Ulku, D., Yildirim, L. T., Biricik, N. & Gumgum, B. (2004). J. Mol. Struct. 688, 207-211.]); Tacke et al. (2003[Tacke, R., Bertermann, R., Penka, M. & Seiler, O. (2003). Z. Anorg. Allg. Chem. 629, 2415-2420.]); Zhang et al. (2003[Zhang, Y. L., Ruan, W. J., Li, Y., Nan, J. & Zhu, Z. A. (2003). Acta Chem. Sin. 61, 186-191.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2N2O2

  • Mr = 436.19

  • Monoclinic, P 21

  • a = 9.249 (5) Å

  • b = 9.350 (6) Å

  • c = 21.82 (2) Å

  • β = 99.122 (13)°

  • V = 1863 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.36 mm−1

  • T = 298 (2) K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.461, Tmax = 0.542 (expected range = 0.424–0.498)

  • 12101 measured reflections

  • 3433 independent reflections

  • 1894 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 0.97

  • 3433 reflections

  • 405 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.588 (8) 129
N2—H2⋯O2 0.86 1.93 2.584 (9) 131
N3—H3⋯O3 0.86 1.98 2.602 (9) 129
N4—H4⋯O4 0.86 1.97 2.596 (9) 129
C5—H5C⋯O2i 0.96 2.66 3.463 (12) 142
C12—H12B⋯O1ii 0.96 2.56 3.416 (12) 149
C23—H23A⋯O3iii 0.97 2.66 3.581 (12) 159
C28—H28C⋯O4iv 0.96 2.65 3.419 (13) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base obtained from condensation of acetylacetone and different diamines have been used as ligand for the complex formation with a variety of transition metals (Bottcher et al., 1997; McCann et al., 2001; Na et al., 2002; Ozkar et al., 2004; Tacke et al., 2003). and have found immense analytical applications (Chimpalee et al., 2000; Zhang et al., 2003). In this work, we report a crystal structure of N, N'-bis(bromo-acetylacetone)-1R,2R-diaminocyclohexane ligands.

The crystal structure of the title compound is shown in Fig. 1, each dissymmetrical unit cell contains two vertical each other independent molecules. Each molecule has two intramolecular N+—H···O- hydrogen bonds, which links each nitrogen atoms to the corresponding nearby terminal oxygen atoms of the same acacH-imine unit (N1—H1···O1, N2—H2···O2, N3—H3···O3 and N4—H4···O4, Table 1) such that a coplanar six-membered ring is generated. As shown in Fig. 2, the molecules of the title compound are lined up by the intermolecular interaction (C—H···O, Table 1.) forming two vertical each other two-dimensional chains along the a axis and b axis of the unit cell, respectively. The structure also shows a non-coplanar array for the (R, R)-cyclohexanediamine moiety and both of the C=N imine groups have the Z arrangements with respect to the chiral C—C sigma bond (C6—C11 or C22—C27) in the cyclohexanediamine, and the Schiff base molecule are non-coplanar due to chirality of the cyclohexanediamine moiety.

Related literature top

For related literature, see: Bottcher et al. (1997); Bu et al. (1997); Chimpalee et al. (2000); Dominiak et al. (2003); Gilli et al. (1989); McCann et al. (2001); Na et al. (2002); Ozkar et al. (2004); Tacke et al. (2003); Zhang et al. (2003).

Experimental top

1R,2R-Diaminocyclohexane (0.115 g, 1.00 mmol) was added slowly, whilst stirring, to a methanol (15 ml) solution with acetylacetone (0.2 g, 2.00 mmol), and the mixture was heated at reflux for 2 h. After cooling, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 20% EtOAc-hexane to afford pure yellow crystals of N,N'-bis-acetylacetone-1R,2R-dDiaminocyclohexane and dried in vacuum. Solid N-bromosuccimide (0.088 g, 0.5 mmol) was added slowly, whilst stirring, to a solution of the compound 1 (0.14 g, 0.5 mmol) in ethanol (20 ml). Stirring the solution for 2 h, and then the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 35% EtOAc-CH2Cl2 to afford pure pale yellow crystals of 2 and dried in vacuum, 0.1 g (yield 46%). Single crystals suitable for X-ray diffraction were obtained from an ethanol-CH2Cl2 mixture by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.96-0.98 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of (II), viewed in the ab plane, with the C—H···O interactions shown as dashed lines.
3,3'-Dibromo-4,4'-[(1R,2R)-cyclohexane-1,2- diyldiimino]dipent-3-en-2-one top
Crystal data top
C16H24Br2N2O2F(000) = 880
Mr = 436.19Dx = 1.555 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5587 reflections
a = 9.249 (5) Åθ = 1.0–25.0°
b = 9.350 (6) ŵ = 4.36 mm1
c = 21.82 (2) ÅT = 298 K
β = 99.122 (13)°Prism, colourless
V = 1863 (3) Å30.21 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube1894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scanθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.461, Tmax = 0.542k = 910
12101 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
C16H24Br2N2O2V = 1863 (3) Å3
Mr = 436.19Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.249 (5) ŵ = 4.36 mm1
b = 9.350 (6) ÅT = 298 K
c = 21.82 (2) Å0.21 × 0.18 × 0.16 mm
β = 99.122 (13)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1894 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.542Rint = 0.055
12101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 0.97Δρmax = 0.38 e Å3
3433 reflectionsΔρmin = 0.42 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1762 (11)0.3858 (14)0.3222 (5)0.102 (4)
H1A0.24970.33460.30450.153*
H1B0.14680.46890.29750.153*
H1C0.09290.32500.32300.153*
C160.1713 (12)0.9661 (18)0.3226 (5)0.131 (5)
H16A0.07350.98790.30290.197*
H16B0.20990.88960.30070.197*
H16C0.23191.04930.32210.197*
C170.5609 (13)0.7298 (16)0.1865 (4)0.115 (4)
H17A0.47250.76890.19750.172*
H17B0.64400.77040.21270.172*
H17C0.56120.62790.19190.172*
C321.1245 (13)0.7174 (16)0.1748 (4)0.122 (5)
H32A1.21050.77380.17320.183*
H32B1.15220.62770.19470.183*
H32C1.06040.76770.19790.183*
C20.2376 (11)0.4310 (12)0.3872 (4)0.069 (3)
C30.3634 (9)0.5293 (10)0.4000 (4)0.055 (2)
C40.4082 (8)0.5911 (10)0.4549 (4)0.046 (2)
C50.5318 (9)0.6972 (11)0.4656 (4)0.070 (3)
H5A0.49260.79220.46620.106*
H5B0.58950.68960.43290.106*
H5C0.59220.67760.50470.106*
C60.3513 (9)0.6388 (10)0.5616 (3)0.052 (2)
H60.42540.71390.56190.062*
C70.3927 (9)0.5475 (11)0.6202 (4)0.070 (3)
H7A0.32070.47220.62090.083*
H7B0.48720.50290.61960.083*
C80.3994 (10)0.6376 (11)0.6772 (4)0.071 (3)
H8A0.47790.70670.67820.085*
H8B0.42200.57710.71360.085*
C90.2550 (10)0.7176 (12)0.6800 (4)0.077 (3)
H9A0.26730.78070.71570.092*
H9B0.17850.64930.68470.092*
C100.2096 (10)0.8057 (11)0.6204 (4)0.072 (3)
H10A0.11510.84990.62150.086*
H10B0.28050.88130.61830.086*
C110.2002 (8)0.7125 (9)0.5630 (3)0.043 (2)
H110.12570.63860.56460.052*
C120.0578 (9)0.6500 (11)0.4709 (4)0.078 (3)
H12A0.13180.64110.43490.117*
H12B0.10190.68170.50550.117*
H12C0.01190.55890.48040.117*
C130.0560 (8)0.7578 (10)0.4581 (4)0.049 (2)
C140.0573 (9)0.8253 (10)0.4022 (4)0.057 (2)
C150.1691 (11)0.9218 (11)0.3882 (5)0.067 (3)
C180.5690 (10)0.7649 (12)0.1194 (4)0.065 (3)
C190.6550 (9)0.8842 (10)0.1036 (4)0.051 (2)
C200.6869 (9)0.9063 (9)0.0454 (4)0.048 (2)
C210.7836 (10)1.0251 (10)0.0312 (4)0.069 (3)
H21A0.88361.00230.04740.103*
H21B0.75631.11180.05010.103*
H21C0.77311.03790.01290.103*
C220.6848 (8)0.8009 (8)0.0591 (4)0.042 (2)
H220.76210.87160.06110.051*
C230.5697 (10)0.8218 (10)0.1152 (4)0.066 (3)
H23A0.52990.91760.11460.079*
H23B0.49050.75450.11380.079*
C240.6317 (11)0.8001 (12)0.1745 (4)0.077 (3)
H24A0.55370.81060.20960.093*
H24B0.70420.87350.17770.093*
C250.7009 (12)0.6564 (15)0.1775 (4)0.100 (4)
H25A0.74740.65010.21430.120*
H25B0.62680.58240.17990.120*
C260.8189 (10)0.6342 (11)0.1174 (4)0.069 (3)
H26A0.85970.53870.11790.083*
H26B0.89800.70210.11770.083*
C270.7536 (9)0.6538 (9)0.0592 (4)0.053 (2)
H270.67710.58170.05830.064*
C280.7431 (10)0.4321 (10)0.0342 (5)0.069 (3)
H28A0.64760.46930.03700.104*
H28B0.76920.36120.06590.104*
H28C0.74230.38940.00580.104*
C290.8524 (8)0.5509 (9)0.0430 (4)0.048 (2)
C300.9422 (9)0.5755 (10)0.0989 (4)0.057 (2)
C311.0469 (10)0.6904 (13)0.1100 (5)0.071 (3)
N10.3468 (6)0.5565 (7)0.5046 (3)0.0480 (18)
H10.29960.47700.50260.058*
N20.1623 (6)0.7941 (8)0.5063 (3)0.0534 (18)
H20.21050.87150.50280.064*
N30.6301 (6)0.8226 (7)0.0014 (3)0.0495 (18)
H30.55220.77610.00320.059*
N40.8647 (6)0.6349 (7)0.0047 (3)0.0509 (19)
H40.94500.68200.00340.061*
O10.1794 (7)0.3886 (7)0.4302 (3)0.0709 (18)
O20.2644 (7)0.9658 (7)0.4308 (3)0.0779 (19)
O30.5019 (7)0.6859 (8)0.0789 (3)0.085 (2)
O41.0671 (6)0.7704 (8)0.0690 (3)0.081 (2)
Br10.44737 (12)0.58781 (14)0.32986 (5)0.0905 (4)
Br20.08805 (11)0.76970 (15)0.33409 (5)0.0971 (4)
Br30.74344 (13)1.00453 (13)0.17037 (5)0.0946 (4)
Br40.91939 (13)0.45712 (13)0.16842 (5)0.0993 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (8)0.137 (11)0.085 (8)0.005 (7)0.008 (6)0.040 (8)
C160.119 (10)0.208 (16)0.064 (8)0.021 (11)0.011 (7)0.071 (9)
C170.160 (11)0.127 (11)0.067 (7)0.012 (9)0.050 (7)0.005 (8)
C320.131 (9)0.147 (13)0.074 (8)0.010 (9)0.029 (7)0.006 (9)
C20.074 (7)0.091 (8)0.043 (6)0.012 (6)0.017 (5)0.001 (6)
C30.054 (5)0.066 (7)0.046 (6)0.009 (5)0.015 (4)0.003 (5)
C40.042 (5)0.048 (5)0.050 (5)0.007 (5)0.013 (4)0.003 (5)
C50.059 (6)0.069 (7)0.086 (7)0.004 (5)0.022 (5)0.012 (6)
C60.064 (6)0.069 (7)0.024 (4)0.001 (5)0.012 (4)0.001 (4)
C70.071 (6)0.091 (9)0.046 (6)0.022 (6)0.007 (4)0.012 (6)
C80.081 (7)0.087 (8)0.042 (6)0.017 (6)0.000 (5)0.011 (5)
C90.103 (7)0.091 (8)0.037 (5)0.016 (7)0.011 (5)0.001 (5)
C100.083 (6)0.082 (8)0.050 (6)0.007 (6)0.010 (5)0.007 (6)
C110.051 (5)0.051 (5)0.028 (4)0.002 (4)0.006 (4)0.001 (4)
C120.061 (6)0.086 (9)0.085 (8)0.017 (6)0.007 (5)0.011 (6)
C130.050 (5)0.044 (6)0.052 (6)0.002 (5)0.009 (4)0.005 (5)
C140.049 (5)0.066 (7)0.052 (6)0.003 (5)0.002 (4)0.013 (5)
C150.076 (7)0.061 (7)0.065 (7)0.006 (6)0.017 (6)0.004 (6)
C180.082 (6)0.067 (7)0.049 (6)0.023 (7)0.018 (5)0.002 (6)
C190.053 (5)0.053 (6)0.047 (6)0.010 (5)0.008 (4)0.011 (5)
C200.052 (5)0.039 (6)0.052 (6)0.007 (4)0.008 (5)0.002 (5)
C210.093 (7)0.060 (7)0.056 (6)0.015 (6)0.018 (5)0.008 (5)
C220.051 (5)0.036 (6)0.039 (5)0.006 (4)0.004 (4)0.003 (4)
C230.092 (7)0.064 (7)0.039 (5)0.015 (5)0.001 (5)0.001 (5)
C240.104 (7)0.089 (8)0.034 (6)0.034 (7)0.003 (5)0.011 (5)
C250.120 (9)0.144 (12)0.034 (6)0.042 (8)0.001 (6)0.024 (6)
C260.087 (7)0.079 (8)0.041 (5)0.016 (5)0.008 (5)0.002 (5)
C270.049 (5)0.060 (7)0.050 (6)0.008 (4)0.005 (4)0.006 (5)
C280.079 (7)0.051 (7)0.075 (7)0.008 (5)0.006 (5)0.018 (6)
C290.049 (5)0.051 (7)0.044 (5)0.010 (5)0.010 (4)0.002 (5)
C300.064 (5)0.052 (6)0.053 (6)0.006 (5)0.005 (5)0.003 (5)
C310.069 (7)0.063 (8)0.076 (8)0.001 (6)0.000 (6)0.003 (7)
N10.052 (4)0.048 (5)0.045 (4)0.013 (3)0.012 (3)0.004 (4)
N20.058 (4)0.058 (5)0.041 (4)0.007 (4)0.002 (3)0.003 (4)
N30.047 (4)0.056 (5)0.046 (4)0.012 (3)0.009 (3)0.012 (4)
N40.039 (4)0.058 (5)0.054 (5)0.007 (3)0.003 (3)0.008 (4)
O10.084 (4)0.077 (5)0.053 (4)0.013 (4)0.015 (4)0.009 (4)
O20.084 (5)0.084 (5)0.065 (4)0.019 (4)0.009 (4)0.013 (4)
O30.101 (5)0.091 (6)0.068 (5)0.035 (4)0.033 (4)0.007 (4)
O40.070 (4)0.075 (5)0.093 (5)0.015 (4)0.002 (4)0.011 (5)
Br10.1002 (8)0.1210 (10)0.0566 (7)0.0003 (8)0.0317 (6)0.0100 (7)
Br20.0836 (7)0.1347 (11)0.0628 (7)0.0004 (8)0.0196 (5)0.0041 (8)
Br30.1140 (9)0.1142 (10)0.0531 (6)0.0114 (8)0.0055 (6)0.0306 (7)
Br40.1200 (10)0.1090 (11)0.0666 (8)0.0057 (8)0.0076 (6)0.0326 (7)
Geometric parameters (Å, º) top
C1—C21.503 (13)C12—H12C0.9600
C1—H1A0.9600C13—N21.364 (9)
C1—H1B0.9600C13—C141.376 (11)
C1—H1C0.9600C14—C151.442 (13)
C16—C151.492 (13)C14—Br21.911 (8)
C16—H16A0.9600C15—O21.246 (11)
C16—H16B0.9600C18—O31.240 (11)
C16—H16C0.9600C18—C191.444 (14)
C17—C181.513 (12)C19—C201.365 (11)
C17—H17A0.9600C19—Br31.917 (8)
C17—H17B0.9600C20—N31.327 (10)
C17—H17C0.9600C20—C211.489 (12)
C32—C311.501 (12)C21—H21A0.9600
C32—H32A0.9600C21—H21B0.9600
C32—H32B0.9600C21—H21C0.9600
C32—H32C0.9600C22—N31.445 (10)
C2—O11.220 (10)C22—C231.502 (10)
C2—C31.474 (13)C22—C271.515 (11)
C3—C41.335 (11)C22—H220.9800
C3—Br11.903 (8)C23—C241.510 (12)
C4—N11.341 (9)C23—H23A0.9700
C4—C51.504 (12)C23—H23B0.9700
C5—H5A0.9600C24—C251.494 (14)
C5—H5B0.9600C24—H24A0.9700
C5—H5C0.9600C24—H24B0.9700
C6—N11.457 (9)C25—C261.581 (11)
C6—C71.536 (11)C25—H25A0.9700
C6—C111.564 (10)C25—H25B0.9700
C6—H60.9800C26—C271.502 (10)
C7—C81.495 (11)C26—H26A0.9700
C7—H7A0.9700C26—H26B0.9700
C7—H7B0.9700C27—N41.453 (9)
C8—C91.541 (12)C27—H270.9800
C8—H8A0.9700C28—C291.494 (12)
C8—H8B0.9700C28—H28A0.9600
C9—C101.541 (11)C28—H28B0.9600
C9—H9A0.9700C28—H28C0.9600
C9—H9B0.9700C29—N41.324 (9)
C10—C111.516 (11)C29—C301.381 (11)
C10—H10A0.9700C30—C311.441 (14)
C10—H10B0.9700C30—Br41.916 (9)
C11—N21.448 (9)C31—O41.204 (11)
C11—H110.9800N1—H10.8600
C12—C131.515 (12)N2—H20.8600
C12—H12A0.9600N3—H30.8600
C12—H12B0.9600N4—H40.8600
C2—C1—H1A109.5C13—C14—C15125.7 (8)
C2—C1—H1B109.5C13—C14—Br2117.4 (7)
H1A—C1—H1B109.5C15—C14—Br2116.4 (7)
C2—C1—H1C109.5O2—C15—C14119.6 (9)
H1A—C1—H1C109.5O2—C15—C16120.6 (10)
H1B—C1—H1C109.5C14—C15—C16119.8 (10)
C15—C16—H16A109.5O3—C18—C19121.5 (8)
C15—C16—H16B109.5O3—C18—C17117.7 (11)
H16A—C16—H16B109.5C19—C18—C17120.8 (10)
C15—C16—H16C109.5C20—C19—C18123.2 (8)
H16A—C16—H16C109.5C20—C19—Br3119.3 (7)
H16B—C16—H16C109.5C18—C19—Br3117.2 (7)
C18—C17—H17A109.5N3—C20—C19120.6 (8)
C18—C17—H17B109.5N3—C20—C21117.3 (8)
H17A—C17—H17B109.5C19—C20—C21122.1 (8)
C18—C17—H17C109.5C20—C21—H21A109.5
H17A—C17—H17C109.5C20—C21—H21B109.5
H17B—C17—H17C109.5H21A—C21—H21B109.5
C31—C32—H32A109.5C20—C21—H21C109.5
C31—C32—H32B109.5H21A—C21—H21C109.5
H32A—C32—H32B109.5H21B—C21—H21C109.5
C31—C32—H32C109.5N3—C22—C23113.0 (7)
H32A—C32—H32C109.5N3—C22—C27109.5 (7)
H32B—C32—H32C109.5C23—C22—C27111.1 (7)
O1—C2—C3119.2 (8)N3—C22—H22107.7
O1—C2—C1119.2 (10)C23—C22—H22107.7
C3—C2—C1121.5 (9)C27—C22—H22107.7
C4—C3—C2124.3 (8)C22—C23—C24111.4 (7)
C4—C3—Br1119.3 (7)C22—C23—H23A109.4
C2—C3—Br1116.0 (7)C24—C23—H23A109.4
C3—C4—N1120.7 (8)C22—C23—H23B109.4
C3—C4—C5123.1 (8)C24—C23—H23B109.3
N1—C4—C5116.2 (7)H23A—C23—H23B108.0
C4—C5—H5A109.5C25—C24—C23112.4 (8)
C4—C5—H5B109.5C25—C24—H24A109.1
H5A—C5—H5B109.5C23—C24—H24A109.1
C4—C5—H5C109.5C25—C24—H24B109.1
H5A—C5—H5C109.5C23—C24—H24B109.1
H5B—C5—H5C109.5H24A—C24—H24B107.8
N1—C6—C7112.8 (7)C24—C25—C26109.0 (8)
N1—C6—C11110.2 (6)C24—C25—H25A109.9
C7—C6—C11109.5 (6)C26—C25—H25A109.9
N1—C6—H6108.1C24—C25—H25B109.9
C7—C6—H6108.1C26—C25—H25B109.9
C11—C6—H6108.1H25A—C25—H25B108.3
C8—C7—C6110.6 (8)C27—C26—C25111.6 (7)
C8—C7—H7A109.5C27—C26—H26A109.3
C6—C7—H7A109.5C25—C26—H26A109.3
C8—C7—H7B109.5C27—C26—H26B109.3
C6—C7—H7B109.5C25—C26—H26B109.3
H7A—C7—H7B108.1H26A—C26—H26B108.0
C7—C8—C9112.6 (7)N4—C27—C26110.5 (7)
C7—C8—H8A109.1N4—C27—C22110.6 (7)
C9—C8—H8A109.1C26—C27—C22109.7 (8)
C7—C8—H8B109.1N4—C27—H27108.7
C9—C8—H8B109.1C26—C27—H27108.7
H8A—C8—H8B107.8C22—C27—H27108.7
C8—C9—C10110.3 (7)C29—C28—H28A109.5
C8—C9—H9A109.6C29—C28—H28B109.5
C10—C9—H9A109.6H28A—C28—H28B109.5
C8—C9—H9B109.6C29—C28—H28C109.5
C10—C9—H9B109.6H28A—C28—H28C109.5
H9A—C9—H9B108.1H28B—C28—H28C109.5
C11—C10—C9111.2 (8)N4—C29—C30118.8 (8)
C11—C10—H10A109.4N4—C29—C28118.7 (7)
C9—C10—H10A109.4C30—C29—C28122.5 (8)
C11—C10—H10B109.4C29—C30—C31124.5 (9)
C9—C10—H10B109.4C29—C30—Br4118.5 (7)
H10A—C10—H10B108.0C31—C30—Br4116.9 (7)
N2—C11—C10112.1 (7)O4—C31—C30121.2 (9)
N2—C11—C6108.1 (6)O4—C31—C32119.2 (11)
C10—C11—C6109.6 (6)C30—C31—C32119.5 (11)
N2—C11—H11109.0C4—N1—C6127.2 (7)
C10—C11—H11109.0C4—N1—H1116.4
C6—C11—H11109.0C6—N1—H1116.4
C13—C12—H12A109.5C13—N2—C11125.1 (7)
C13—C12—H12B109.5C13—N2—H2117.5
H12A—C12—H12B109.5C11—N2—H2117.5
C13—C12—H12C109.5C20—N3—C22127.1 (7)
H12A—C12—H12C109.5C20—N3—H3116.5
H12B—C12—H12C109.5C22—N3—H3116.5
N2—C13—C14117.6 (8)C29—N4—C27125.3 (7)
N2—C13—C12117.4 (8)C29—N4—H4117.3
C14—C13—C12124.9 (8)C27—N4—H4117.3
O1—C2—C3—C49.1 (14)N3—C22—C23—C24179.2 (8)
C1—C2—C3—C4168.9 (9)C27—C22—C23—C2457.2 (10)
O1—C2—C3—Br1179.5 (7)C22—C23—C24—C2556.6 (12)
C1—C2—C3—Br12.6 (12)C23—C24—C25—C2654.1 (12)
C2—C3—C4—N16.0 (13)C24—C25—C26—C2755.3 (12)
Br1—C3—C4—N1177.2 (6)C25—C26—C27—N4179.2 (8)
C2—C3—C4—C5176.5 (8)C25—C26—C27—C2257.0 (11)
Br1—C3—C4—C55.3 (11)N3—C22—C27—N454.4 (8)
N1—C6—C7—C8178.6 (7)C23—C22—C27—N4180.0 (7)
C11—C6—C7—C858.3 (10)N3—C22—C27—C26176.5 (6)
C6—C7—C8—C956.6 (11)C23—C22—C27—C2657.9 (9)
C7—C8—C9—C1054.3 (11)N4—C29—C30—C312.1 (12)
C8—C9—C10—C1155.0 (10)C28—C29—C30—C31178.6 (8)
C9—C10—C11—N2178.1 (7)N4—C29—C30—Br4178.1 (6)
C9—C10—C11—C658.0 (9)C28—C29—C30—Br42.5 (11)
N1—C6—C11—N253.7 (9)C29—C30—C31—O43.4 (15)
C7—C6—C11—N2178.3 (7)Br4—C30—C31—O4179.5 (8)
N1—C6—C11—C10176.2 (7)C29—C30—C31—C32172.3 (9)
C7—C6—C11—C1059.2 (10)Br4—C30—C31—C323.8 (12)
N2—C13—C14—C156.2 (13)C3—C4—N1—C6161.2 (8)
C12—C13—C14—C15176.2 (8)C5—C4—N1—C621.2 (11)
N2—C13—C14—Br2178.1 (6)C7—C6—N1—C4132.1 (8)
C12—C13—C14—Br24.3 (11)C11—C6—N1—C4105.2 (8)
C13—C14—C15—O210.3 (14)C14—C13—N2—C11164.3 (7)
Br2—C14—C15—O2177.7 (7)C12—C13—N2—C1117.9 (11)
C13—C14—C15—C16168.6 (10)C10—C11—N2—C13131.6 (8)
Br2—C14—C15—C163.4 (12)C6—C11—N2—C13107.4 (8)
O3—C18—C19—C2010.1 (14)C19—C20—N3—C22159.0 (8)
C17—C18—C19—C20168.3 (9)C21—C20—N3—C2222.0 (12)
O3—C18—C19—Br3176.3 (7)C23—C22—N3—C20128.5 (8)
C17—C18—C19—Br35.2 (12)C27—C22—N3—C20107.0 (8)
C18—C19—C20—N34.9 (13)C30—C29—N4—C27159.8 (8)
Br3—C19—C20—N3178.4 (6)C28—C29—N4—C2720.9 (12)
C18—C19—C20—C21176.1 (8)C26—C27—N4—C29129.6 (8)
Br3—C19—C20—C212.6 (11)C22—C27—N4—C29108.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.588 (8)129
N2—H2···O20.861.932.584 (9)131
N3—H3···O30.861.982.602 (9)129
N4—H4···O40.861.972.596 (9)129
C5—H5C···O2i0.962.663.463 (12)142
C12—H12B···O1ii0.962.563.416 (12)149
C23—H23A···O3iii0.972.663.581 (12)159
C28—H28C···O4iv0.962.653.419 (13)138
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H24Br2N2O2
Mr436.19
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.249 (5), 9.350 (6), 21.82 (2)
β (°) 99.122 (13)
V3)1863 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.36
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.461, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
12101, 3433, 1894
Rint0.055
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 0.97
No. of reflections3433
No. of parameters405
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.588 (8)128.5
N2—H2···O20.861.932.584 (9)131.4
N3—H3···O30.861.982.602 (9)128.7
N4—H4···O40.861.972.596 (9)128.5
C5—H5C···O2i0.962.663.463 (12)141.6
C12—H12B···O1ii0.962.563.416 (12)148.9
C23—H23A···O3iii0.972.663.581 (12)159.4
C28—H28C···O4iv0.962.653.419 (13)137.6
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+2, y1/2, z.
 

Acknowledgements

We acknowledge the support of the Natural Science Foundation and the International Cooperation Foundation of Guizhou Province, P. R. China.

References

First citationBottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem. 36, 2498–2504.  CSD CrossRef Web of Science Google Scholar
First citationBruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. R., Jackson, C. R., Derveer, D. V., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991–3001.  CSD CrossRef CAS Web of Science Google Scholar
First citationChimpalee, N., Chimpalee, D., Keawpasert, P. & Burns, D. T. (2000). Anal. Chim. Acta, 408, 123–125.  Web of Science CrossRef CAS Google Scholar
First citationDominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Wozniak, K. (2003). Chem. Eur. J. 9, 963–970.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationMcCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799–2806.  Web of Science CSD CrossRef CAS Google Scholar
First citationNa, H. G., Lee, J. W., Choi, J. H., Byun, J. C. & Park, Y. C. (2002). Polyhedron, 21, 917–920.  Web of Science CrossRef CAS Google Scholar
First citationOzkar, S., Ulku, D., Yildirim, L. T., Biricik, N. & Gumgum, B. (2004). J. Mol. Struct. 688, 207–211.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTacke, R., Bertermann, R., Penka, M. & Seiler, O. (2003). Z. Anorg. Allg. Chem. 629, 2415–2420.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y. L., Ruan, W. J., Li, Y., Nan, J. & Zhu, Z. A. (2003). Acta Chem. Sin. 61, 186–191.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o203-o204
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds