organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(4-Amino-5-chloro-2-eth­oxy­benz­amido)meth­yl]pyrrolo[2,1-c][1,4]oxazin-5-ium chloride monohydrate

aCollege of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.cn

(Received 8 November 2008; accepted 26 November 2008; online 3 December 2008)

The title compound, C17H25ClN3O3+·Cl·H2O, is a monohydrated hydro­chloride salt of a new derivative of mosapride, which is a pharmaceutical compound possessing gastrointestinal pro-kinetic activity. The chloride anion accepts hydrogen bonds from the NH group of the pyrrolooxazine fused-ring system and from the amine group, and the water mol­ecules form hydrogen bonds that bridge between the chloride anion and the C=O bond of the amide.

Related literature

For related structures and background information concerning mosapride, see: Kakigami et al. (1998[Kakigami, T., Usui, T., Ikami, T., Tsukamoto, K., Miwa, Y., Taga, T. & Kataoka, T. (1998). Chem. Pharm. Bull. 46, 1039-1043.]); Morie et al. (1995[Morie, T., Kato, S., Harada, H., Yoshida, N., Fujiwara, I. & Matsumoto, J.-I. (1995). Chem. Pharm. Bull. 43, 1137-1147.]); Omae et al. (2002[Omae, T., Sakurai, M., Ashizawa, K. & Kajima, T. (2002). Anal. Sci. 18, 729-730.]); Aoki et al. (2007[Aoki, Y., Hakamata, H., Igarashi, Y., Uchida, K., Kobayashi, H., Hirayama, N., Kotani, A. & Kusu, F. (2007). J. Chromatogr. B858, 135-142.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25ClN3O3+·Cl·H2O

  • Mr = 408.32

  • Orthorhombic, P 21 21 21

  • a = 8.0984 (9) Å

  • b = 11.1594 (13) Å

  • c = 21.843 (3) Å

  • V = 1974.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.945

  • 10642 measured reflections

  • 3848 independent reflections

  • 3188 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.096

  • S = 1.06

  • 3848 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1631 Friedel pairs

  • Flack parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.84 (4) 2.66 (4) 3.384 (3) 146 (3)
N1—H1B⋯Cl1ii 0.85 (3) 2.45 (3) 3.281 (3) 169 (3)
N3—H3C⋯Cl1 0.92 (3) 2.18 (3) 3.077 (3) 164 (2)
O1W—H1WA⋯Cl1iii 0.79 (3) 2.62 (3) 3.410 (4) 176 (3)
O1W—H1WB⋯O2 0.88 (4) 1.95 (5) 2.800 (4) 161 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Mosapride citrate is a benzamide derivative that possesses a gastrointestinal prokinetic activity (Aoki et al. 2007). The title compound (Fig. 1) is a new mosapride derivative, and crystals of its hydrochloride salt were obtained by acidifying with hydrochloric acid then recrystallizing from methanol.

In the benzamide unit, the C=O bond distance of 1.229 (3) Å is much shorter than the C—O bond distances (1.359 (3)–1.432 (3) Å), showing it to have full double-bond character. Meanwhile, the C9—N2 distance of 1.330 (4) Å is comparable with that of C4—N1 (1.352 (4) Å), but much shorter than N2—C10 (1.441 (3) Å), N3—C13 (1.493 (4) Å), N3—C14 (1.489 (4) Å) and N3—C17 (1.492 (4) Å). Thus, the C4—N1 bond has partial double-bond character.

Related literature top

For related structures and background information concerning mosapride, see: Kakigami et al. (1998); Morie et al. (1995); Omae et al. (2002); Aoki et al. (2007).

Experimental top

A mixture of 4-amino-5-chloro-2-ethoxybenzoic acid (8.613 g, 40 mmol), (hexahydro-1H-pyrrolo[2,1-c][1,4]oxazin-3-yl)methanamine (4.8 g, 30.72 mmol) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (11.8 g, 61.8 mmol) in CH2Cl2 (60 ml) was stirred for two hours under an argon atmosphere. The products were treated with saturated NaHCO3 (200 ml) and extracted with CH2Cl2 (3 × 300 ml), then the organic layer was dried with anhydrous MgSO4 and distilled under vacuum. The white solids were collected and dried (yield 5.856 g, 54.0%). Crystals of the title compound were obtained by acidifying with hydrochloric acid then recrystallizing from methanol.

Refinement top

With the exception of the central amide group, H atoms bonded to N and O atoms were located in difference Fourier maps and refined without restraint. Other H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30% displacement ellipsoids for non-H atoms.
3-[(4-Amino-5-chloro-2-ethoxybenzamido)methyl]pyrrolo[2,1- c][1,4]oxazin-5-ium chloride monohydrate top
Crystal data top
C17H25ClN3O3+·Cl·H2OF(000) = 864
Mr = 408.32Dx = 1.374 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 735 reflections
a = 8.0984 (9) Åθ = 2.5–28.0°
b = 11.1594 (13) ŵ = 0.36 mm1
c = 21.843 (3) ÅT = 293 K
V = 1974.0 (4) Å3Block, colourless
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Bruker APEX CCD
diffractometer
3848 independent reflections
Radiation source: fine-focus sealed tube3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.919, Tmax = 0.945k = 1013
10642 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3848 reflectionsΔρmax = 0.32 e Å3
261 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1631 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C17H25ClN3O3+·Cl·H2OV = 1974.0 (4) Å3
Mr = 408.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0984 (9) ŵ = 0.36 mm1
b = 11.1594 (13) ÅT = 293 K
c = 21.843 (3) Å0.24 × 0.20 × 0.16 mm
Data collection top
Bruker APEX CCD
diffractometer
3848 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3188 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.037
10642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.32 e Å3
S = 1.06Δρmin = 0.22 e Å3
3848 reflectionsAbsolute structure: Flack (1983), 1631 Friedel pairs
261 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6257 (3)0.7564 (2)0.77046 (11)0.0307 (6)
C20.4701 (4)0.8084 (3)0.76571 (13)0.0364 (7)
C30.3807 (3)0.8034 (3)0.71361 (13)0.0376 (7)
C40.4363 (4)0.7438 (2)0.66142 (12)0.0344 (6)
C50.5913 (4)0.6900 (3)0.66594 (13)0.0368 (7)
C60.6851 (3)0.6961 (2)0.71801 (12)0.0323 (6)
C70.9124 (4)0.5928 (3)0.66895 (12)0.0443 (8)
H7A0.92610.65110.63640.053*
H7B0.84290.52830.65410.053*
C81.0757 (4)0.5452 (3)0.68833 (13)0.0455 (8)
H8A1.05900.47800.71500.068*
H8B1.13710.52010.65300.068*
H8C1.13600.60650.70960.068*
C90.7127 (4)0.7704 (2)0.82975 (12)0.0309 (6)
C100.9629 (4)0.7321 (3)0.88920 (13)0.0452 (8)
H10A0.89210.74860.92400.054*
H10B1.04310.79640.88600.054*
C111.0507 (4)0.6148 (3)0.89873 (12)0.0374 (7)
H110.96900.55040.90210.045*
C121.2222 (4)0.4781 (3)0.84947 (14)0.0523 (10)
H12A1.28800.46460.81300.063*
H12B1.13480.41860.85020.063*
C131.3298 (4)0.4625 (3)0.90549 (13)0.0408 (8)
H131.35960.37770.90900.049*
C141.1561 (4)0.6167 (3)0.95570 (11)0.0345 (7)
H14A1.23810.67980.95270.041*
H14B1.08780.63230.99130.041*
C151.4860 (4)0.5363 (3)0.90920 (16)0.0545 (9)
H15A1.46930.61510.89160.065*
H15B1.57590.49690.88780.065*
C161.5225 (5)0.5453 (4)0.97717 (17)0.0689 (11)
H16A1.61820.49710.98760.083*
H16B1.54430.62780.98860.083*
C171.3705 (4)0.4991 (3)1.01002 (14)0.0511 (9)
H17A1.38910.41911.02590.061*
H17B1.34060.55161.04360.061*
Cl10.92851 (11)0.35057 (8)0.99188 (4)0.0554 (3)
Cl20.18901 (10)0.87543 (9)0.70977 (4)0.0614 (3)
N10.3486 (4)0.7381 (3)0.60884 (12)0.0482 (7)
H1A0.266 (5)0.780 (3)0.5990 (16)0.072*
H1B0.394 (4)0.717 (3)0.5755 (15)0.072*
N20.8652 (3)0.7270 (2)0.83413 (10)0.0438 (7)
H2A0.90790.69410.80230.053*
N31.2391 (3)0.4983 (2)0.96212 (11)0.0363 (6)
O10.8390 (2)0.64810 (19)0.72151 (8)0.0410 (5)
O20.6491 (3)0.8222 (2)0.87342 (8)0.0453 (6)
O31.1512 (3)0.59417 (19)0.84669 (9)0.0478 (6)
O1W0.3524 (4)0.8923 (3)0.92869 (14)0.0712 (8)
H20.426 (3)0.845 (2)0.8005 (12)0.038 (8)*
H50.627 (3)0.648 (3)0.6312 (12)0.043 (8)*
H3C1.161 (3)0.443 (2)0.9736 (11)0.031 (8)*
H1WA0.368 (4)0.954 (3)0.9456 (15)0.049 (12)*
H1WB0.444 (6)0.887 (4)0.9073 (18)0.103 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (16)0.0293 (15)0.0321 (14)0.0011 (13)0.0022 (12)0.0019 (12)
C20.0337 (18)0.0426 (18)0.0329 (16)0.0061 (14)0.0033 (13)0.0059 (14)
C30.0220 (15)0.0445 (18)0.0461 (17)0.0067 (13)0.0004 (13)0.0014 (15)
C40.0289 (15)0.0347 (16)0.0395 (16)0.0000 (14)0.0011 (14)0.0037 (13)
C50.0427 (19)0.0369 (17)0.0308 (15)0.0003 (14)0.0093 (14)0.0037 (13)
C60.0295 (16)0.0310 (16)0.0364 (15)0.0031 (13)0.0027 (13)0.0048 (13)
C70.046 (2)0.0475 (19)0.0396 (17)0.0091 (16)0.0043 (15)0.0063 (15)
C80.0380 (19)0.0496 (19)0.0488 (18)0.0063 (17)0.0112 (16)0.0018 (15)
C90.0303 (16)0.0275 (15)0.0350 (15)0.0027 (12)0.0025 (13)0.0008 (13)
C100.045 (2)0.0479 (19)0.0430 (18)0.0126 (16)0.0087 (15)0.0073 (15)
C110.0368 (16)0.0376 (17)0.0380 (15)0.0030 (15)0.0034 (14)0.0028 (14)
C120.052 (2)0.063 (2)0.0426 (18)0.0179 (19)0.0069 (16)0.0193 (17)
C130.0390 (19)0.0365 (17)0.0468 (17)0.0072 (15)0.0058 (15)0.0087 (14)
C140.0361 (16)0.0335 (16)0.0338 (14)0.0030 (14)0.0013 (13)0.0051 (13)
C150.038 (2)0.054 (2)0.071 (2)0.0050 (16)0.0032 (18)0.0074 (19)
C160.043 (2)0.077 (3)0.087 (3)0.0011 (19)0.016 (2)0.024 (2)
C170.059 (2)0.0451 (19)0.0486 (19)0.0065 (17)0.0229 (17)0.0012 (16)
Cl10.0476 (5)0.0593 (5)0.0594 (5)0.0128 (4)0.0147 (4)0.0070 (4)
Cl20.0388 (5)0.0819 (7)0.0635 (5)0.0261 (5)0.0107 (4)0.0162 (5)
N10.0410 (17)0.067 (2)0.0367 (15)0.0077 (15)0.0072 (13)0.0028 (14)
N20.0434 (16)0.0529 (16)0.0350 (13)0.0173 (13)0.0074 (12)0.0107 (12)
N30.0367 (15)0.0338 (14)0.0385 (14)0.0018 (12)0.0079 (11)0.0017 (12)
O10.0352 (12)0.0515 (13)0.0364 (10)0.0138 (10)0.0004 (9)0.0086 (10)
O20.0358 (12)0.0588 (15)0.0415 (11)0.0069 (11)0.0012 (10)0.0108 (11)
O30.0531 (14)0.0558 (14)0.0346 (10)0.0229 (12)0.0035 (10)0.0039 (10)
O1W0.0479 (18)0.088 (2)0.078 (2)0.0005 (17)0.0099 (15)0.0155 (18)
Geometric parameters (Å, º) top
C1—C21.391 (4)C11—H110.980
C1—C61.413 (4)C12—O31.419 (4)
C1—C91.483 (4)C12—C131.512 (4)
C2—C31.350 (4)C12—H12A0.970
C2—H20.93 (3)C12—H12B0.970
C3—C41.394 (4)C13—N31.493 (4)
C3—Cl21.750 (3)C13—C151.511 (4)
C4—N11.352 (4)C13—H130.980
C4—C51.395 (4)C14—N31.489 (4)
C5—C61.369 (4)C14—H14A0.970
C5—H50.94 (3)C14—H14B0.970
C6—O11.359 (3)C15—C161.517 (4)
C7—O11.432 (3)C15—H15A0.970
C7—C81.486 (4)C15—H15B0.970
C7—H7A0.970C16—C171.515 (5)
C7—H7B0.970C16—H16A0.970
C8—H8A0.960C16—H16B0.970
C8—H8B0.960C17—N31.492 (4)
C8—H8C0.960C17—H17A0.970
C9—O21.229 (3)C17—H17B0.970
C9—N21.330 (4)N1—H1A0.84 (4)
C10—N21.441 (3)N1—H1B0.85 (3)
C10—C111.504 (4)N2—H2A0.860
C10—H10A0.970N3—H3C0.92 (3)
C10—H10B0.970O1W—H1WA0.79 (3)
C11—O31.417 (3)O1W—H1WB0.88 (4)
C11—C141.509 (4)
C2—C1—C6116.5 (3)O3—C12—H12B109.2
C2—C1—C9116.8 (2)C13—C12—H12B109.2
C6—C1—C9126.7 (2)H12A—C12—H12B107.9
C3—C2—C1122.1 (3)N3—C13—C15102.8 (2)
C3—C2—H2120.1 (17)N3—C13—C12110.9 (2)
C1—C2—H2117.8 (17)C15—C13—C12117.6 (3)
C2—C3—C4122.4 (3)N3—C13—H13108.4
C2—C3—Cl2119.8 (2)C15—C13—H13108.4
C4—C3—Cl2117.8 (2)C12—C13—H13108.4
N1—C4—C3123.2 (3)N3—C14—C11108.7 (2)
N1—C4—C5120.8 (3)N3—C14—H14A109.9
C3—C4—C5116.0 (3)C11—C14—H14A109.9
C6—C5—C4122.4 (3)N3—C14—H14B109.9
C6—C5—H5122.0 (18)C11—C14—H14B109.9
C4—C5—H5115.6 (18)H14A—C14—H14B108.3
O1—C6—C5122.4 (2)C13—C15—C16104.6 (3)
O1—C6—C1117.0 (2)C13—C15—H15A110.8
C5—C6—C1120.6 (3)C16—C15—H15A110.8
O1—C7—C8107.1 (2)C13—C15—H15B110.8
O1—C7—H7A110.3C16—C15—H15B110.8
C8—C7—H7A110.3H15A—C15—H15B108.9
O1—C7—H7B110.3C17—C16—C15106.4 (3)
C8—C7—H7B110.3C17—C16—H16A110.4
H7A—C7—H7B108.5C15—C16—H16A110.4
C7—C8—H8A109.1C17—C16—H16B110.4
C7—C8—H8B109.7C15—C16—H16B110.4
H8A—C8—H8B109.5H16A—C16—H16B108.6
C7—C8—H8C109.7N3—C17—C16104.4 (3)
H8A—C8—H8C109.5N3—C17—H17A110.9
H8B—C8—H8C109.5C16—C17—H17A110.9
O2—C9—N2120.3 (3)N3—C17—H17B110.9
O2—C9—C1121.9 (2)C16—C17—H17B110.9
N2—C9—C1117.7 (2)H17A—C17—H17B108.9
N2—C10—C11109.9 (2)C4—N1—H1A127 (3)
N2—C10—H10A109.7C4—N1—H1B121 (3)
C11—C10—H10A109.7H1A—N1—H1B106 (3)
N2—C10—H10B109.7C9—N2—C10123.8 (2)
C11—C10—H10B109.7C9—N2—H2A118.1
H10A—C10—H10B108.2C10—N2—H2A118.1
O3—C11—C10107.6 (2)C14—N3—C17112.5 (2)
O3—C11—C14109.8 (2)C14—N3—C13112.4 (2)
C10—C11—C14111.7 (2)C17—N3—C13103.4 (2)
O3—C11—H11109.2C14—N3—H3C108.4 (17)
C10—C11—H11109.2C17—N3—H3C107.6 (16)
C14—C11—H11109.2C13—N3—H3C112.4 (16)
O3—C12—C13111.9 (3)C6—O1—C7120.4 (2)
O3—C12—H12A109.2C11—O3—C12110.3 (2)
C13—C12—H12A109.2H1WA—O1W—H1WB100 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.84 (4)2.66 (4)3.384 (3)146 (3)
N1—H1B···Cl1ii0.85 (3)2.45 (3)3.281 (3)169 (3)
N3—H3C···Cl10.92 (3)2.18 (3)3.077 (3)164 (2)
O1W—H1WA···Cl1iii0.79 (3)2.62 (3)3.410 (4)176 (3)
O1W—H1WB···O20.88 (4)1.95 (5)2.800 (4)161 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H25ClN3O3+·Cl·H2O
Mr408.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.0984 (9), 11.1594 (13), 21.843 (3)
V3)1974.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10642, 3848, 3188
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.096, 1.06
No. of reflections3848
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.22
Absolute structureFlack (1983), 1631 Friedel pairs
Absolute structure parameter0.02 (7)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.84 (4)2.66 (4)3.384 (3)146 (3)
N1—H1B···Cl1ii0.85 (3)2.45 (3)3.281 (3)169 (3)
N3—H3C···Cl10.92 (3)2.18 (3)3.077 (3)164 (2)
O1W—H1WA···Cl1iii0.79 (3)2.62 (3)3.410 (4)176 (3)
O1W—H1WB···O20.88 (4)1.95 (5)2.800 (4)161 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+3/2, z+2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in China Pharmaceutical University for financial support.

References

First citationAoki, Y., Hakamata, H., Igarashi, Y., Uchida, K., Kobayashi, H., Hirayama, N., Kotani, A. & Kusu, F. (2007). J. Chromatogr. B858, 135–142.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKakigami, T., Usui, T., Ikami, T., Tsukamoto, K., Miwa, Y., Taga, T. & Kataoka, T. (1998). Chem. Pharm. Bull. 46, 1039–1043.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorie, T., Kato, S., Harada, H., Yoshida, N., Fujiwara, I. & Matsumoto, J.-I. (1995). Chem. Pharm. Bull. 43, 1137–1147.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOmae, T., Sakurai, M., Ashizawa, K. & Kajima, T. (2002). Anal. Sci. 18, 729–730.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds