organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­phenyl­amino)benzaldehyde

aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
*Correspondence e-mail: hlwang@mail.ccnu.edu.cn

(Received 13 November 2008; accepted 12 December 2008; online 17 December 2008)

In the title compound, C19H15NO, the N atom adopts an approximately trigonal-planar geometry, lying 0.07 (1) Å from the plane defined by its three neighbouring C atoms. The two phenyl rings and the benzaldehyde group form dihedral angles of 53.0 (1)/47.2 (1) and 29.0 (1)°, respectively, with this central plane.

Related literature

For details of the synthesis, see: Wang & Zhou (2000[Wang, X. & Zhou, Y. (2000). J. Mater. Chem. 10, 2698-2703.]). For aryl­amines, see: Beller (1995[Beller, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1316-1317.]); Wang et al. (2005[Wang, H., Li, Z., Shao, P., Liang, Y., Wang, H., Qin, J. & Gong, Q. (2005). New J. Chem. 29, 792-798.]); Yao et al. (2006[Yao, Y. S., Xiao, J., Wang, X. S., Deng, Z. B. & Zhang, B. W. (2006). Adv. Funct. Mater. 16, 709-714.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO

  • Mr = 273.32

  • Monoclinic, P 21 /c

  • a = 12.1188 (8) Å

  • b = 11.4342 (8) Å

  • c = 10.9560 (7) Å

  • β = 102.082 (2)°

  • V = 1484.53 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.40 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.997

  • 12673 measured reflections

  • 2898 independent reflections

  • 1393 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.153

  • S = 0.91

  • 2898 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arylamine derivatives are common intermediates in the synthesis of many compounds and polymers (Yao et al., 2006; Beller, 1995). We became interested in using the Vilsmeier reaction to obtain the title compound, which is a good intermediate for several compounds (Wang et al., 2005). In the crystal structure (Fig. 1), the bond lengths and angles are within normal ranges.

Related literature top

For details of the synthesis, see: Wang & Zhou (2000). For arylamines, see: Beller (1995); Wang et al. (2005); Yao et al. (2006).

Experimental top

The title compound was synthesised according to the published procedure (Wang & Zhou, 2000) and recrystallized from chloroform.

Refinement top

All H atoms were placed in geometrically idealized positions with C—H = 0.93 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at 50% probability for non-H atoms.
4-(Diphenylamino)benzaldehyde top
Crystal data top
C19H15NOF(000) = 576
Mr = 273.32Dx = 1.223 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 843 reflections
a = 12.1188 (8) Åθ = 2.6–18.1°
b = 11.4342 (8) ŵ = 0.08 mm1
c = 10.9560 (7) ÅT = 292 K
β = 102.082 (2)°Needle, colorless
V = 1484.53 (17) Å30.40 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2898 independent reflections
Radiation source: fine-focus sealed tube1393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.971, Tmax = 0.997k = 1414
12673 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0688P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.14 e Å3
191 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (2)
Crystal data top
C19H15NOV = 1484.53 (17) Å3
Mr = 273.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1188 (8) ŵ = 0.08 mm1
b = 11.4342 (8) ÅT = 292 K
c = 10.9560 (7) Å0.40 × 0.10 × 0.04 mm
β = 102.082 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1393 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.997Rint = 0.087
12673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.91Δρmax = 0.14 e Å3
2898 reflectionsΔρmin = 0.14 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7834 (2)0.14287 (18)0.0025 (2)0.0483 (7)
C20.6819 (2)0.09360 (19)0.0112 (3)0.0587 (8)
H20.63070.13600.04600.070*
C30.6555 (2)0.0192 (2)0.0318 (3)0.0624 (8)
H30.58640.05200.02660.075*
C40.7312 (3)0.0821 (2)0.0817 (3)0.0637 (8)
H40.71360.15780.11020.076*
C50.8329 (3)0.0340 (2)0.0896 (3)0.0659 (8)
H50.88410.07710.12380.079*
C60.8601 (2)0.0793 (2)0.0468 (2)0.0574 (7)
H60.92950.11160.05140.069*
C70.9178 (2)0.27936 (18)0.1276 (2)0.0492 (7)
C80.9540 (2)0.2101 (2)0.2309 (3)0.0645 (8)
H80.90760.15140.25050.077*
C91.0605 (3)0.2283 (3)0.3059 (3)0.0787 (9)
H91.08500.18170.37590.094*
C101.1294 (3)0.3147 (3)0.2769 (3)0.0790 (10)
H101.20070.32630.32670.095*
C111.0929 (3)0.3832 (2)0.1750 (3)0.0811 (10)
H111.13920.44210.15550.097*
C120.9878 (2)0.3656 (2)0.1008 (3)0.0639 (8)
H120.96380.41280.03120.077*
C130.7402 (2)0.35282 (17)0.0019 (2)0.0475 (6)
C140.6713 (2)0.34636 (19)0.1196 (3)0.0593 (7)
H140.67240.27970.16790.071*
C150.6009 (2)0.43842 (19)0.1657 (3)0.0612 (8)
H150.55390.43200.24420.073*
C160.5989 (2)0.53936 (19)0.0979 (3)0.0556 (7)
C170.6677 (2)0.5467 (2)0.0200 (3)0.0605 (8)
H170.66680.61420.06730.073*
C180.7375 (2)0.45501 (19)0.0682 (3)0.0577 (7)
H180.78300.46100.14760.069*
C190.5231 (2)0.6343 (2)0.1488 (3)0.0772 (9)
H190.47570.62100.22600.093*
N10.81100 (18)0.25939 (15)0.0479 (2)0.0567 (6)
O10.51528 (17)0.72793 (15)0.1018 (2)0.0929 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (16)0.0370 (12)0.0592 (17)0.0004 (11)0.0050 (14)0.0024 (11)
C20.0541 (17)0.0434 (14)0.078 (2)0.0030 (12)0.0132 (15)0.0002 (13)
C30.0542 (18)0.0487 (15)0.080 (2)0.0060 (13)0.0049 (17)0.0013 (13)
C40.070 (2)0.0444 (14)0.069 (2)0.0000 (15)0.0034 (17)0.0046 (13)
C50.077 (2)0.0587 (17)0.0599 (19)0.0171 (15)0.0085 (17)0.0094 (13)
C60.0515 (17)0.0579 (15)0.0632 (19)0.0006 (13)0.0126 (15)0.0002 (13)
C70.0497 (17)0.0421 (13)0.0533 (17)0.0006 (12)0.0052 (14)0.0027 (12)
C80.063 (2)0.0678 (17)0.063 (2)0.0082 (14)0.0146 (17)0.0088 (15)
C90.077 (3)0.102 (2)0.054 (2)0.030 (2)0.0059 (19)0.0009 (17)
C100.059 (2)0.091 (2)0.080 (3)0.0012 (19)0.001 (2)0.035 (2)
C110.068 (2)0.0638 (18)0.105 (3)0.0069 (16)0.004 (2)0.0098 (19)
C120.0566 (19)0.0577 (15)0.073 (2)0.0066 (14)0.0024 (16)0.0013 (14)
C130.0466 (16)0.0380 (12)0.0558 (17)0.0024 (11)0.0063 (14)0.0006 (11)
C140.0660 (19)0.0441 (14)0.0625 (19)0.0027 (12)0.0010 (16)0.0066 (12)
C150.0591 (18)0.0515 (15)0.0662 (19)0.0039 (13)0.0025 (15)0.0006 (13)
C160.0484 (17)0.0430 (14)0.073 (2)0.0013 (11)0.0066 (16)0.0000 (13)
C170.0591 (18)0.0417 (14)0.081 (2)0.0023 (13)0.0158 (17)0.0126 (13)
C180.0561 (18)0.0489 (14)0.0638 (19)0.0003 (12)0.0027 (15)0.0047 (13)
C190.077 (2)0.0477 (16)0.103 (3)0.0085 (15)0.0115 (19)0.0079 (16)
N10.0526 (14)0.0375 (10)0.0714 (16)0.0000 (9)0.0067 (12)0.0017 (10)
O10.0878 (16)0.0471 (11)0.143 (2)0.0126 (10)0.0210 (15)0.0011 (11)
Geometric parameters (Å, º) top
C1—C21.375 (3)C10—C111.359 (4)
C1—C61.376 (3)C10—H100.930
C1—N11.437 (3)C11—C121.375 (3)
C2—C31.387 (3)C11—H110.930
C2—H20.930C12—H120.930
C3—C41.366 (4)C13—C141.383 (3)
C3—H30.930C13—C181.402 (3)
C4—C51.369 (4)C13—N11.407 (3)
C4—H40.930C14—C151.382 (3)
C5—C61.394 (3)C14—H140.930
C5—H50.930C15—C161.376 (3)
C6—H60.930C15—H150.930
C7—C121.372 (3)C16—C171.385 (4)
C7—C81.375 (3)C16—C191.456 (3)
C7—N11.421 (3)C17—C181.381 (3)
C8—C91.392 (4)C17—H170.930
C8—H80.930C18—H180.930
C9—C101.373 (4)C19—O11.200 (3)
C9—H90.930C19—H190.930
C2—C1—C6119.9 (2)C10—C11—C12120.2 (3)
C2—C1—N1120.2 (2)C10—C11—H11119.9
C6—C1—N1119.9 (2)C12—C11—H11119.9
C1—C2—C3120.2 (2)C7—C12—C11121.1 (3)
C1—C2—H2119.9C7—C12—H12119.5
C3—C2—H2119.9C11—C12—H12119.5
C4—C3—C2119.9 (3)C14—C13—C18118.4 (2)
C4—C3—H3120.0C14—C13—N1121.4 (2)
C2—C3—H3120.0C18—C13—N1120.2 (2)
C3—C4—C5120.2 (2)C15—C14—C13120.4 (2)
C3—C4—H4119.9C15—C14—H14119.8
C5—C4—H4119.9C13—C14—H14119.8
C4—C5—C6120.3 (3)C16—C15—C14121.4 (3)
C4—C5—H5119.9C16—C15—H15119.3
C6—C5—H5119.9C14—C15—H15119.3
C1—C6—C5119.5 (2)C15—C16—C17118.6 (2)
C1—C6—H6120.3C15—C16—C19120.0 (3)
C5—C6—H6120.3C17—C16—C19121.3 (2)
C12—C7—C8119.0 (3)C18—C17—C16120.7 (2)
C12—C7—N1120.6 (2)C18—C17—H17119.6
C8—C7—N1120.4 (2)C16—C17—H17119.6
C7—C8—C9119.8 (3)C17—C18—C13120.4 (3)
C7—C8—H8120.1C17—C18—H18119.8
C9—C8—H8120.1C13—C18—H18119.8
C10—C9—C8120.2 (3)O1—C19—C16126.9 (3)
C10—C9—H9119.9O1—C19—H19116.5
C8—C9—H9119.9C16—C19—H19116.5
C11—C10—C9119.7 (3)C13—N1—C7121.32 (18)
C11—C10—H10120.1C13—N1—C1119.4 (2)
C9—C10—H10120.1C7—N1—C1118.55 (18)
C6—C1—C2—C31.3 (4)C14—C15—C16—C19179.6 (3)
N1—C1—C2—C3179.5 (2)C15—C16—C17—C180.5 (4)
C1—C2—C3—C40.7 (4)C19—C16—C17—C18178.7 (2)
C2—C3—C4—C50.2 (4)C16—C17—C18—C130.3 (4)
C3—C4—C5—C60.1 (4)C14—C13—C18—C170.2 (4)
C2—C1—C6—C51.2 (4)N1—C13—C18—C17179.6 (2)
N1—C1—C6—C5179.5 (2)C15—C16—C19—O1177.5 (3)
C4—C5—C6—C10.7 (4)C17—C16—C19—O14.4 (5)
C12—C7—C8—C90.1 (4)C14—C13—N1—C7146.1 (2)
N1—C7—C8—C9177.9 (2)C18—C13—N1—C734.5 (4)
C7—C8—C9—C100.2 (4)C14—C13—N1—C123.9 (4)
C8—C9—C10—C110.5 (4)C18—C13—N1—C1155.4 (2)
C9—C10—C11—C120.5 (5)C12—C7—N1—C1342.9 (4)
C8—C7—C12—C110.1 (4)C8—C7—N1—C13139.1 (2)
N1—C7—C12—C11177.9 (2)C12—C7—N1—C1127.3 (2)
C10—C11—C12—C70.2 (4)C8—C7—N1—C150.7 (3)
C18—C13—C14—C150.6 (4)C2—C1—N1—C1358.8 (3)
N1—C13—C14—C15178.8 (2)C6—C1—N1—C13123.0 (3)
C13—C14—C15—C161.4 (4)C2—C1—N1—C7130.9 (3)
C14—C15—C16—C171.4 (4)C6—C1—N1—C747.4 (3)

Experimental details

Crystal data
Chemical formulaC19H15NO
Mr273.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)12.1188 (8), 11.4342 (8), 10.9560 (7)
β (°) 102.082 (2)
V3)1484.53 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.971, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
12673, 2898, 1393
Rint0.087
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 0.91
No. of reflections2898
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBeller, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 1316–1317.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Li, Z., Shao, P., Liang, Y., Wang, H., Qin, J. & Gong, Q. (2005). New J. Chem. 29, 792–798.  Web of Science CrossRef Google Scholar
First citationWang, X. & Zhou, Y. (2000). J. Mater. Chem. 10, 2698–2703.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, Y. S., Xiao, J., Wang, X. S., Deng, Z. B. & Zhang, B. W. (2006). Adv. Funct. Mater. 16, 709–714.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds