metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}di­methano­ltrinitratonickel(II)europium(III) methanol disolvate

aThe College of Chemical Engineering & Materials, Eastern Liaoning University, Liaoning 118003, People's Republic of China
*Correspondence e-mail: berylliu8090@sina.com

(Received 25 November 2008; accepted 8 December 2008; online 20 December 2008)

The title dinuclear complex, [EuNi(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OH, is isostructural with its NiII/PrIII analogue. The NiII ion is coordinated by two O atoms and two N atoms of a Schiff base ligand and by two methanol mol­ecules, forming a slightly distorted octa­hedral geometry. The EuIII ion is coordinated by six O atoms from three chelating nitrate ligands and four O atoms from a Schiff base ligand, forming a distorted bicapped square-anti­prismatic environment. Inter­molecular O—H⋯O hydrogen bonds connect complexes and methanol solvent mol­ecules.

Related literature

For the isostructural NiII/PrIII compound, see: Liu & Zhang (2008[Liu, F. & Zhang, F. (2008). Acta Cryst. E64, m589.]). For a related CuII/SmIII compound, see: Wang et al. (2008[Wang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.]).

[Scheme 1]

Experimental

Crystal data
  • [EuNi(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OH

  • Mr = 865.24

  • Monoclinic, P 21 /c

  • a = 13.062 (3) Å

  • b = 11.105 (2) Å

  • c = 22.122 (4) Å

  • β = 90.81 (3)°

  • V = 3208.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 291 (2) K

  • 0.24 × 0.23 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.572, Tmax = 0.605

  • 28507 measured reflections

  • 7257 independent reflections

  • 6231 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.060

  • S = 1.08

  • 7257 reflections

  • 430 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H24⋯O16 0.83 1.86 2.657 (4) 162
O15—H25⋯O6i 0.82 2.28 3.092 (4) 174
O16—H16⋯O17ii 0.82 1.94 2.715 (6) 157
O17—H17⋯O13 0.82 2.15 2.923 (5) 158
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, the hexadentate Schiff base ligand links NiII and EuIII atoms into a dinuclear complex through two phenolate O atoms, which is the same as the bonding in the isostructural NiII/PrIII complex of the same ligand (Liu & Zhang, 2008) and a related CuII/SmIII complex (Wang et al., 2008). The EuIII ion is ten-coordinated by four O atoms from the ligand and six O atoms from three nitrate ions. The NiII ion is six-coordinated by two N atoms and two O atoms from the ligand and by two methanol molecules. They are two solvent methanol molecules for each complex. In the crystal structure, intermolecular O—H···O hydrogen bonds connect complexes and methanol solvent molecules to form chains along [010]. The chains can be viewed to lie in sheets in the (10\-2) planes.

Related literature top

For the isostructural NiII/PrIII compound, see: Liu & Zhang (2008). For a related CuII/SmIII compound, see: Wang et al. (2008).

Experimental top

The title complex was obtained by reaction of nickel(II) acetate tetrahydrate (0.0622 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol (25 ml) at room temperature. Europium(III) nitrate hexahydrate (0.1117 g, 0.25 mmol) was added and the mixture was refluxed for 3 h. The reaction mixture was then cooled and filtered, and diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Blue crystals were obtained after several days. Elemental analysis calculated; C, 31.93; H, 4.19; N, 8.09; found: C, 31.99; H, 4.20; N, 8.11.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), 0.97 Å (methylene C) or C—H = 0.96 Å (methyl C), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atoms bond to O atoms of uncoordinated methanol were placed in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å, and with Uiso(H) = 1.5Ueq(O). H atoms bond to O atoms of coordinated methanol were initially located in a difference Fourier map and refined using restraints on the bond lengths (O—H = 0.82 (1) Å), after which they were constrained to ride on O with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing 40% probability displacement ellipsoids for non-H atoms. The dashed line indicates a hydrogen bond.
{µ-6,6'-Dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}dimethanoltrinitratoeuropium(III) nickel(II) methanol disolvate top
Crystal data top
[EuNi(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OHF(000) = 1744
Mr = 865.24Dx = 1.791 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25476 reflections
a = 13.062 (3) Åθ = 3.0–27.5°
b = 11.105 (2) ŵ = 2.61 mm1
c = 22.122 (4) ÅT = 291 K
β = 90.81 (3)°Block, brown
V = 3208.3 (11) Å30.24 × 0.23 × 0.21 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7257 independent reflections
Radiation source: fine-focus sealed tube6231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.572, Tmax = 0.605k = 1413
28507 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0114P)2 + 4.9558P]
where P = (Fo2 + 2Fc2)/3
7257 reflections(Δ/σ)max = 0.027
430 parametersΔρmax = 0.65 e Å3
6 restraintsΔρmin = 0.46 e Å3
Crystal data top
[EuNi(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OHV = 3208.3 (11) Å3
Mr = 865.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.062 (3) ŵ = 2.61 mm1
b = 11.105 (2) ÅT = 291 K
c = 22.122 (4) Å0.24 × 0.23 × 0.21 mm
β = 90.81 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7257 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6231 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.605Rint = 0.031
28507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.08Δρmax = 0.65 e Å3
7257 reflectionsΔρmin = 0.46 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3764 (2)0.4308 (3)0.09086 (13)0.0301 (6)
C20.4448 (2)0.3501 (3)0.06332 (13)0.0334 (6)
C30.5468 (3)0.3765 (3)0.05608 (16)0.0446 (8)
H30.58990.32160.03740.054*
C40.5848 (3)0.4853 (4)0.07678 (18)0.0529 (9)
H40.65390.50350.07280.064*
C50.5204 (3)0.5663 (3)0.10317 (17)0.0480 (9)
H50.54650.63960.11670.058*
C60.4157 (2)0.5417 (3)0.11034 (14)0.0349 (7)
C70.3548 (3)0.6359 (3)0.13797 (14)0.0372 (7)
H70.38820.70870.14470.045*
C80.2244 (3)0.7419 (3)0.18478 (18)0.0518 (9)
H8A0.25070.81170.16370.062*
H8B0.25230.74370.22570.062*
C90.1101 (3)0.7518 (3)0.18760 (17)0.0509 (9)
H9A0.08230.74890.14670.061*
H9B0.09280.82970.20450.061*
C100.0591 (3)0.6550 (3)0.22458 (16)0.0479 (9)
H10A0.09930.64060.26110.057*
H10B0.00820.68250.23650.057*
C110.0400 (3)0.4959 (3)0.18735 (13)0.0361 (7)
H110.09230.53800.20610.043*
C120.0689 (2)0.3843 (3)0.15762 (13)0.0316 (6)
C130.1738 (3)0.3570 (3)0.15506 (15)0.0416 (8)
H130.22030.41180.17070.050*
C140.2094 (3)0.2525 (3)0.13036 (16)0.0464 (8)
H140.27930.23720.12830.056*
C150.1400 (3)0.1689 (3)0.10823 (15)0.0407 (7)
H150.16340.09650.09200.049*
C160.0375 (2)0.1932 (3)0.11034 (13)0.0311 (6)
C170.0014 (2)0.3024 (3)0.13360 (12)0.0287 (6)
C180.0093 (3)0.0093 (3)0.0860 (2)0.0589 (11)
H18A0.02310.03310.12280.088*
H18B0.06950.05720.08010.088*
H18C0.03730.02090.05260.088*
C190.4543 (3)0.1704 (3)0.00302 (19)0.0583 (11)
H19A0.48220.22070.02790.087*
H19B0.40840.11270.01500.087*
H19C0.50880.12890.02380.087*
C200.1851 (4)0.3577 (4)0.27402 (18)0.0688 (12)
H20A0.15830.41570.30180.103*
H20B0.23070.30410.29530.103*
H20C0.12980.31230.25630.103*
C210.1495 (3)0.5974 (4)0.01424 (17)0.0606 (11)
H21A0.16220.68160.02080.091*
H21B0.10680.58720.02100.091*
H21C0.21340.55640.00850.091*
C220.4141 (5)0.4996 (6)0.3499 (3)0.117 (2)
H22A0.48140.53280.35580.176*
H22B0.41840.41340.34850.176*
H22C0.37130.52350.38270.176*
C230.5326 (4)0.3315 (5)0.2241 (2)0.0840 (15)
H23A0.47480.38450.22680.126*
H23B0.55080.32180.18250.126*
H23C0.58940.36510.24630.126*
Eu10.216548 (11)0.204199 (13)0.078316 (7)0.02910 (5)
N10.2616 (2)0.6317 (2)0.15424 (11)0.0350 (6)
N20.0487 (2)0.5428 (2)0.19071 (11)0.0340 (6)
N30.1437 (3)0.2941 (3)0.04323 (15)0.0535 (8)
N40.2728 (3)0.0388 (3)0.03324 (16)0.0546 (8)
N50.2750 (3)0.1093 (3)0.19951 (14)0.0504 (7)
Ni20.17214 (3)0.48224 (3)0.146065 (16)0.02754 (8)
O10.27914 (15)0.39775 (17)0.09610 (9)0.0299 (4)
O20.39949 (17)0.2432 (2)0.04516 (10)0.0395 (5)
O30.10207 (15)0.32092 (17)0.13245 (9)0.0298 (4)
O40.03726 (17)0.11435 (18)0.08970 (10)0.0383 (5)
O50.0877 (2)0.2728 (3)0.00001 (12)0.0673 (8)
O60.1081 (3)0.3307 (4)0.09113 (14)0.0957 (12)
O70.2364 (3)0.2816 (3)0.03296 (15)0.0853 (10)
O80.2135 (2)0.0327 (3)0.00601 (15)0.0739 (9)
O90.2952 (3)0.1375 (3)0.01348 (18)0.0885 (11)
O100.3103 (3)0.0001 (3)0.08092 (15)0.0849 (11)
O110.1898 (2)0.0829 (3)0.17700 (13)0.0644 (8)
O120.3047 (3)0.0714 (4)0.24791 (15)0.0928 (12)
O130.3302 (2)0.1800 (2)0.16903 (11)0.0492 (6)
O140.23890 (18)0.4177 (2)0.22810 (10)0.0439 (5)
H240.28540.46080.24160.066*
O150.10003 (18)0.5488 (2)0.06494 (10)0.0449 (6)
H250.04290.57690.07050.067*
O160.3719 (3)0.5426 (3)0.29502 (15)0.0917 (11)
H160.39670.60870.28750.138*
O170.5081 (3)0.2221 (4)0.2479 (2)0.1067 (13)
H170.45230.20050.23420.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0254 (16)0.0353 (15)0.0295 (14)0.0023 (12)0.0014 (11)0.0045 (12)
C20.0265 (16)0.0393 (16)0.0345 (16)0.0015 (13)0.0010 (12)0.0048 (12)
C30.0278 (19)0.055 (2)0.051 (2)0.0026 (15)0.0048 (14)0.0043 (16)
C40.0267 (19)0.066 (2)0.066 (2)0.0086 (17)0.0055 (16)0.0085 (19)
C50.037 (2)0.049 (2)0.057 (2)0.0148 (16)0.0030 (16)0.0055 (16)
C60.0299 (17)0.0372 (16)0.0376 (16)0.0062 (13)0.0001 (13)0.0039 (13)
C70.041 (2)0.0316 (15)0.0389 (17)0.0089 (13)0.0052 (14)0.0015 (12)
C80.058 (3)0.0345 (17)0.063 (2)0.0054 (16)0.0022 (19)0.0141 (16)
C90.067 (3)0.0318 (16)0.054 (2)0.0127 (17)0.0067 (19)0.0109 (15)
C100.048 (2)0.0453 (19)0.050 (2)0.0059 (16)0.0060 (16)0.0196 (16)
C110.0356 (19)0.0400 (17)0.0329 (16)0.0119 (14)0.0049 (13)0.0015 (13)
C120.0260 (16)0.0394 (16)0.0294 (14)0.0023 (12)0.0041 (11)0.0036 (12)
C130.0277 (18)0.054 (2)0.0428 (18)0.0075 (15)0.0044 (14)0.0021 (15)
C140.0249 (18)0.062 (2)0.052 (2)0.0051 (15)0.0003 (14)0.0022 (17)
C150.0329 (19)0.0451 (18)0.0441 (18)0.0089 (14)0.0036 (14)0.0009 (14)
C160.0266 (16)0.0355 (15)0.0313 (14)0.0009 (12)0.0010 (11)0.0029 (12)
C170.0247 (15)0.0347 (14)0.0265 (13)0.0005 (12)0.0003 (10)0.0053 (12)
C180.052 (3)0.0288 (17)0.096 (3)0.0065 (16)0.011 (2)0.0027 (18)
C190.056 (3)0.050 (2)0.069 (3)0.0074 (18)0.026 (2)0.0120 (18)
C200.083 (3)0.072 (3)0.051 (2)0.015 (2)0.002 (2)0.017 (2)
C210.065 (3)0.072 (3)0.046 (2)0.005 (2)0.0038 (19)0.0201 (19)
C220.125 (5)0.137 (5)0.088 (4)0.018 (4)0.040 (4)0.011 (4)
C230.076 (4)0.092 (4)0.084 (4)0.014 (3)0.009 (3)0.016 (3)
Eu10.02479 (8)0.02687 (7)0.03562 (8)0.00140 (6)0.00035 (5)0.00468 (6)
N10.0395 (16)0.0293 (13)0.0360 (14)0.0023 (11)0.0022 (11)0.0024 (10)
N20.0356 (16)0.0347 (13)0.0317 (13)0.0067 (11)0.0016 (11)0.0073 (10)
N30.049 (2)0.0567 (19)0.0542 (19)0.0025 (16)0.0132 (15)0.0090 (15)
N40.042 (2)0.0444 (17)0.078 (2)0.0082 (14)0.0140 (16)0.0221 (16)
N50.045 (2)0.0552 (18)0.0512 (18)0.0093 (15)0.0013 (14)0.0119 (15)
Ni20.0274 (2)0.02572 (17)0.02952 (18)0.00102 (14)0.00060 (14)0.00302 (14)
O10.0226 (11)0.0294 (10)0.0377 (11)0.0021 (8)0.0029 (8)0.0042 (8)
O20.0291 (12)0.0406 (12)0.0491 (13)0.0022 (9)0.0089 (10)0.0092 (10)
O30.0229 (11)0.0289 (10)0.0377 (11)0.0011 (8)0.0021 (8)0.0047 (8)
O40.0310 (13)0.0302 (11)0.0538 (14)0.0045 (9)0.0017 (10)0.0053 (9)
O50.0567 (19)0.096 (2)0.0494 (16)0.0160 (16)0.0028 (13)0.0104 (15)
O60.091 (3)0.138 (3)0.0573 (19)0.017 (2)0.0185 (18)0.042 (2)
O70.053 (2)0.120 (3)0.082 (2)0.0030 (19)0.0047 (16)0.034 (2)
O80.065 (2)0.0622 (18)0.094 (2)0.0188 (16)0.0173 (17)0.0380 (17)
O90.068 (2)0.0525 (17)0.145 (3)0.0137 (15)0.000 (2)0.0510 (19)
O100.128 (3)0.0564 (18)0.070 (2)0.0237 (19)0.017 (2)0.0108 (16)
O110.0397 (17)0.0777 (19)0.0756 (19)0.0027 (14)0.0029 (14)0.0263 (16)
O120.084 (3)0.126 (3)0.068 (2)0.009 (2)0.0138 (18)0.051 (2)
O130.0516 (16)0.0457 (14)0.0501 (14)0.0071 (11)0.0095 (12)0.0075 (11)
O140.0435 (15)0.0486 (13)0.0394 (12)0.0047 (11)0.0051 (10)0.0071 (10)
O150.0386 (14)0.0582 (15)0.0378 (12)0.0057 (11)0.0013 (10)0.0110 (11)
O160.100 (3)0.090 (2)0.084 (2)0.005 (2)0.045 (2)0.0049 (19)
O170.077 (3)0.108 (3)0.134 (3)0.012 (2)0.037 (2)0.010 (3)
Geometric parameters (Å, º) top
C1—O11.329 (3)C20—O141.410 (4)
C1—C61.401 (4)C20—H20A0.960
C1—C21.410 (4)C20—H20B0.960
C2—C31.376 (4)C20—H20C0.960
C2—O21.384 (4)C21—O151.410 (4)
C3—C41.382 (5)C21—H21A0.960
C3—H30.930C21—H21B0.960
C4—C51.368 (5)C21—H21C0.960
C4—H40.930C22—O161.409 (6)
C5—C61.406 (5)C22—H22A0.960
C5—H50.930C22—H22B0.960
C6—C71.453 (4)C22—H22C0.960
C7—N11.275 (4)C23—O171.364 (6)
C7—H70.930C23—H23A0.960
C8—N11.483 (4)C23—H23B0.960
C8—C91.500 (5)C23—H23C0.960
C8—H8A0.970Eu1—O32.3239 (19)
C8—H8B0.970Eu1—O12.3311 (19)
C9—C101.511 (5)Eu1—O82.487 (3)
C9—H9A0.970Eu1—O132.494 (3)
C9—H9B0.970Eu1—O52.516 (3)
C10—N21.460 (4)Eu1—O22.546 (2)
C10—H10A0.970Eu1—O42.561 (2)
C10—H10B0.970Eu1—O102.579 (3)
C11—N21.271 (4)Eu1—O112.593 (3)
C11—C121.451 (4)Eu1—O72.624 (3)
C11—H110.930Eu1—Ni23.4844 (7)
C12—C171.401 (4)N1—Ni22.036 (3)
C12—C131.403 (4)N2—Ni22.017 (3)
C13—C141.362 (5)N3—O61.221 (4)
C13—H130.930N3—O51.235 (4)
C14—C151.391 (5)N3—O71.237 (4)
C14—H140.930N4—O91.216 (4)
C15—C161.366 (4)N4—O101.234 (4)
C15—H150.930N4—O81.257 (4)
C16—O41.393 (4)N5—O121.210 (4)
C16—C171.409 (4)N5—O111.247 (4)
C17—O31.332 (3)N5—O131.267 (4)
C18—O41.422 (4)Ni2—O12.025 (2)
C18—H18A0.960Ni2—O32.0322 (19)
C18—H18B0.960Ni2—O142.127 (2)
C18—H18C0.960Ni2—O152.146 (2)
C19—O21.433 (4)O14—H240.826
C19—H19A0.960O15—H250.820
C19—H19B0.960O16—H160.820
C19—H19C0.960O17—H170.820
O1—C1—C6124.2 (3)O3—Eu1—O1391.46 (8)
O1—C1—C2118.4 (3)O1—Eu1—O1376.11 (7)
C6—C1—C2117.4 (3)O8—Eu1—O13116.05 (9)
C3—C2—O2124.1 (3)O3—Eu1—O575.94 (8)
C3—C2—C1122.4 (3)O1—Eu1—O593.82 (9)
O2—C2—C1113.5 (3)O8—Eu1—O577.54 (10)
C2—C3—C4119.4 (3)O13—Eu1—O5166.27 (9)
C2—C3—H3120.3O3—Eu1—O2131.83 (7)
C4—C3—H3120.3O1—Eu1—O264.13 (7)
C5—C4—C3119.8 (3)O8—Eu1—O287.23 (9)
C5—C4—H4120.1O13—Eu1—O272.52 (8)
C3—C4—H4120.1O5—Eu1—O2111.80 (9)
C4—C5—C6121.7 (3)O3—Eu1—O464.58 (7)
C4—C5—H5119.2O1—Eu1—O4131.42 (7)
C6—C5—H5119.2O8—Eu1—O476.01 (9)
C1—C6—C5119.3 (3)O13—Eu1—O4114.44 (8)
C1—C6—C7124.2 (3)O5—Eu1—O465.30 (9)
C5—C6—C7116.5 (3)O2—Eu1—O4163.24 (7)
N1—C7—C6128.5 (3)O3—Eu1—O10142.01 (9)
N1—C7—H7115.7O1—Eu1—O10129.96 (10)
C6—C7—H7115.7O8—Eu1—O1049.00 (10)
N1—C8—C9114.3 (3)O13—Eu1—O1067.06 (9)
N1—C8—H8A108.7O5—Eu1—O10126.47 (10)
C9—C8—H8A108.7O2—Eu1—O1073.07 (10)
N1—C8—H8B108.7O4—Eu1—O1095.14 (10)
C9—C8—H8B108.7O3—Eu1—O1176.15 (8)
H8A—C8—H8B107.6O1—Eu1—O11112.83 (9)
C8—C9—C10114.7 (3)O8—Eu1—O1198.19 (11)
C8—C9—H9A108.6O13—Eu1—O1149.63 (9)
C10—C9—H9A108.6O5—Eu1—O11129.81 (9)
C8—C9—H9B108.6O2—Eu1—O11117.96 (8)
C10—C9—H9B108.6O4—Eu1—O1165.21 (8)
H9A—C9—H9B107.6O10—Eu1—O1166.02 (10)
N2—C10—C9111.6 (3)O3—Eu1—O7111.94 (10)
N2—C10—H10A109.3O1—Eu1—O779.45 (10)
C9—C10—H10A109.3O8—Eu1—O769.43 (12)
N2—C10—H10B109.3O13—Eu1—O7136.42 (10)
C9—C10—H10B109.3O5—Eu1—O747.85 (10)
H10A—C10—H10B108.0O2—Eu1—O764.42 (9)
N2—C11—C12127.4 (3)O4—Eu1—O7108.83 (9)
N2—C11—H11116.3O10—Eu1—O7104.84 (11)
C12—C11—H11116.3O11—Eu1—O7167.53 (11)
C17—C12—C13119.3 (3)C7—N1—C8114.7 (3)
C17—C12—C11124.0 (3)C7—N1—Ni2123.6 (2)
C13—C12—C11116.8 (3)C8—N1—Ni2121.5 (2)
C14—C13—C12121.9 (3)C11—N2—C10117.2 (3)
C14—C13—H13119.1C11—N2—Ni2124.7 (2)
C12—C13—H13119.1C10—N2—Ni2117.8 (2)
C13—C14—C15119.3 (3)O6—N3—O5120.9 (4)
C13—C14—H14120.3O6—N3—O7123.8 (4)
C15—C14—H14120.3O5—N3—O7115.1 (3)
C16—C15—C14119.9 (3)O9—N4—O10121.8 (4)
C16—C15—H15120.0O9—N4—O8123.1 (4)
C14—C15—H15120.0O10—N4—O8115.1 (3)
C15—C16—O4123.8 (3)O12—N5—O11123.0 (3)
C15—C16—C17122.0 (3)O12—N5—O13120.6 (4)
O4—C16—C17114.2 (2)O11—N5—O13116.4 (3)
O3—C17—C12124.0 (3)N2—Ni2—O1169.77 (9)
O3—C17—C16118.5 (3)N2—Ni2—O390.28 (9)
C12—C17—C16117.5 (3)O1—Ni2—O379.83 (8)
O4—C18—H18A109.5N2—Ni2—N198.42 (11)
O4—C18—H18B109.5O1—Ni2—N191.51 (9)
H18A—C18—H18B109.5O3—Ni2—N1171.22 (9)
O4—C18—H18C109.5N2—Ni2—O1490.88 (10)
H18A—C18—H18C109.5O1—Ni2—O1491.82 (9)
H18B—C18—H18C109.5O3—Ni2—O1490.43 (9)
O2—C19—H19A109.5N1—Ni2—O1488.35 (10)
O2—C19—H19B109.5N2—Ni2—O1587.17 (10)
H19A—C19—H19B109.5O1—Ni2—O1590.06 (9)
O2—C19—H19C109.5O3—Ni2—O1589.32 (9)
H19A—C19—H19C109.5N1—Ni2—O1592.19 (10)
H19B—C19—H19C109.5O14—Ni2—O15178.03 (9)
O14—C20—H20A109.5C1—O1—Ni2126.01 (18)
O14—C20—H20B109.5C1—O1—Eu1124.97 (17)
H20A—C20—H20B109.5Ni2—O1—Eu1106.04 (8)
O14—C20—H20C109.5C2—O2—C19117.2 (3)
H20A—C20—H20C109.5C2—O2—Eu1117.49 (17)
H20B—C20—H20C109.5C19—O2—Eu1124.8 (2)
O15—C21—H21A109.5C17—O3—Ni2125.17 (17)
O15—C21—H21B109.5C17—O3—Eu1124.52 (17)
H21A—C21—H21B109.5Ni2—O3—Eu1106.04 (8)
O15—C21—H21C109.5C16—O4—C18116.4 (3)
H21A—C21—H21C109.5C16—O4—Eu1115.67 (16)
H21B—C21—H21C109.5C18—O4—Eu1127.2 (2)
O16—C22—H22A109.5N3—O5—Eu1101.2 (2)
O16—C22—H22B109.5N3—O7—Eu195.7 (2)
H22A—C22—H22B109.5N4—O8—Eu199.9 (2)
O16—C22—H22C109.5N4—O10—Eu196.0 (2)
H22A—C22—H22C109.5N5—O11—Eu194.8 (2)
H22B—C22—H22C109.5N5—O13—Eu199.1 (2)
O17—C23—H23A109.5C20—O14—Ni2124.9 (2)
O17—C23—H23B109.5C20—O14—H24112.6
H23A—C23—H23B109.5Ni2—O14—H24113.8
O17—C23—H23C109.5C21—O15—Ni2126.6 (2)
H23A—C23—H23C109.5C21—O15—H25113.7
H23B—C23—H23C109.5Ni2—O15—H25113.4
O3—Eu1—O168.00 (7)C22—O16—H16109.1
O3—Eu1—O8138.92 (9)C23—O17—H17109.3
O1—Eu1—O8144.80 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H24···O160.831.862.657 (4)162
O15—H25···O6i0.822.283.092 (4)174
O16—H16···O17ii0.821.942.715 (6)157
O17—H17···O130.822.152.923 (5)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[EuNi(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OH
Mr865.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.062 (3), 11.105 (2), 22.122 (4)
β (°) 90.81 (3)
V3)3208.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.24 × 0.23 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.572, 0.605
No. of measured, independent and
observed [I > 2σ(I)] reflections
28507, 7257, 6231
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.060, 1.08
No. of reflections7257
No. of parameters430
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.46

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H24···O160.831.862.657 (4)161.8
O15—H25···O6i0.822.283.092 (4)174.4
O16—H16···O17ii0.821.942.715 (6)156.8
O17—H17···O130.822.152.923 (5)157.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University is gratefully acknowledged.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F. & Zhang, F. (2008). Acta Cryst. E64, m589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds