organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

De­hydro­brachylaenolide: an eudesmane-type sesquiterpene lactone

aDepartment of Chemistry, University of Pretoria, Pretoria 0002, South Africa, bSchool of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scotsville 3209, South Africa, and cBiosciences, CSIR, Pretoria, South Africa, and, School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scotsville 3209, South Africa
*Correspondence e-mail: melanie.rademeyer@up.ac.za

(Received 26 November 2008; accepted 12 December 2008; online 24 December 2008)

The three-ring eudesmanolide, C15H16O3, is a natural product isolated from Dicoma anomala Sond. (Asteraceae). The compound contains an endoexo cross conjugated methyl­enecyclo­hexenone ring with an envelope conformation trans-fused with cyclo­hexane and trans-annelated with an α-methyl­ene γ-lactone. The absolute structure was assigned by optical rotation measurements compared to those from the synthetic compound with known stereochemistry. The crystal packing is consolidated by C—H⋯O interactions.

Related literature

For NMR studies of this compound, see: Bohlmann & Zdero, (1982[Bohlmann, F. & Zdero, C. (1982). Phytochemistry, 21, 647-651.]); Grass et al. (2004[Grass, S., Zidorn, C., Ellmerer, E. P. & Stuppner, H. (2004). Chem. Biodivers. 1, 353-360.]). For the chemical synthesis and confirmation of the absolute structure, see: Higuchi et al. (2003[Higuchi, Y., Shimota, F., Koyanagi, R., Suda, K., Mitsui, T., Kataoka, T., Nagai, K. & Ando, M. (2003). J. Nat. Prod. 66, 588-594.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O3

  • Mr = 244.28

  • Orthorhombic, P 21 21 21

  • a = 9.5648 (6) Å

  • b = 11.1631 (6) Å

  • c = 11.5542 (6) Å

  • V = 1233.67 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Oxford Diffraction Excalibur2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.909, Tmax = 0.963

  • 12604 measured reflections

  • 2294 independent reflections

  • 1988 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.05

  • 2294 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.98 2.39 3.360 (2) 171
C14—H14A⋯O1i 0.96 2.57 3.393 (2) 143
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, a sesquiterpene lactone dehydrobrachylaenolide, was isolated from Dicoma anomala Sond (Asteraceae). These bi-functional exo-endo cross conjugated dienones are of importance as synthetic intermediates in the preparation of biologically active natural products (Higuchi et al., 2003). NMR studies of the compound have been reported previously (Bohlmann & Zdero, 1982; Grass et al., 2004) and the absolute stereochemistry has been confirmed as 3-oxoeudesma-1,4(15),11 (13)-triene-12,6a-olide by chemical synthesis (Higuchi et al., 2003). Here we report the crystal structure. Although the absolute structure could not be elucidated by X-ray diffraction, unambiguous assignment of stereochemistry was made on the basis of the value of optical rotation ([α] 24D+68° (c 1/2, CHCl3)) which is identical to that of the synthetic compound ([α] 24D+67.9° (c 0.16, CHCl3)) for which the stereochemistry is known (Higuchi et al., 2003) and very close to the value for the naturally isolated material ([α]24D+67° (c 0.16, CHCl3)) (Bohlmann & Zdero, 1982).

The molecular geometry and labelling scheme are shown in Fig. 1. The methylenecyclohexenone ring adopts an envelope conformation, with the C5 atom out of the plane of the ring by approximately 0.7 Å. The γ-lactone ring is twisted on C6—C7, while the cyclohexane ring adopts a chair conformation. An axial position is occupied by methyl group C14, and the methylene carbon atom C15 is in the equatorial position. A weak intramolecular interaction is formed between C15—H15B···O2. Fig. 2 illustrates the molecular packing viewed down the c axis. Weak intermolecular hydrogen bonds are present between atoms C6—H6···O1i and and C14—H14···O1i [symmetry code (i): 1/2 - x, 1 - y, 1/2 + z].

Related literature top

For NMR studies of this compound, see: Bohlmann & Zdero, (1982); Grass et al. (2004). For the chemical synthesis and confirmation of the absolute structure, see: Higuchi et al. (2003).

Experimental top

The compound was isolated from Dicoma anomala Sond (Asteraceae), and recrystallized from propanol at room temperature.

Refinement top

H atoms were placed geometrically and refined in idealized positions in the riding-model approximation, with C—H = 0.93–0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged as equivalent data.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids at 50% probability for all atoms.
Dehydrobrachylaenolide top
Crystal data top
C15H16O3F(000) = 520
Mr = 244.28Dx = 1.315 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8167 reflections
a = 9.5648 (6) Åθ = 4.0–31.8°
b = 11.1631 (6) ŵ = 0.09 mm1
c = 11.5542 (6) ÅT = 150 K
V = 1233.67 (12) Å3Block, colourless
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Oxford Diffraction Excalibur2 CCD
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 31.9°, θmin = 4.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1313
Tmin = 0.909, Tmax = 0.963k = 1516
12604 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0708P)2]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H16O3V = 1233.67 (12) Å3
Mr = 244.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5648 (6) ŵ = 0.09 mm1
b = 11.1631 (6) ÅT = 150 K
c = 11.5542 (6) Å0.50 × 0.50 × 0.40 mm
Data collection top
Oxford Diffraction Excalibur2 CCD
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1988 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.963Rint = 0.016
12604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2294 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.86180 (14)0.08184 (11)1.24094 (11)0.0237 (2)
O20.87541 (10)0.20733 (7)1.00141 (7)0.0245 (2)
C71.04877 (12)0.07144 (11)0.94161 (10)0.0210 (2)
H71.12530.12110.97140.025*
C81.10043 (14)0.05782 (12)0.94001 (11)0.0246 (3)
H8A1.17980.06570.88830.029*
H8B1.02680.11090.91360.029*
C91.14347 (13)0.08979 (11)1.06503 (11)0.0245 (2)
H9A1.17170.17321.06750.029*
H9B1.22380.04161.08660.029*
O30.85244 (12)0.31953 (9)0.84156 (9)0.0372 (3)
C140.90759 (14)0.16252 (11)1.13671 (12)0.0270 (3)
H14A0.86940.15401.06030.041*
H14B0.83540.14931.19300.041*
H14C0.94470.24191.14580.041*
C60.92565 (13)0.08521 (10)1.02492 (10)0.0197 (2)
H60.85250.02781.00370.024*
C30.90807 (15)0.04878 (12)1.36063 (11)0.0274 (3)
O10.84841 (13)0.08529 (10)1.44767 (9)0.0385 (3)
C110.98993 (14)0.13415 (11)0.83767 (11)0.0234 (2)
C11.08111 (15)0.08814 (12)1.27617 (12)0.0279 (3)
H11.15530.14091.28670.033*
C50.97025 (12)0.06224 (10)1.14800 (10)0.0197 (2)
H51.04910.11561.16470.024*
C101.02589 (13)0.06954 (10)1.15444 (10)0.0213 (2)
C150.73174 (15)0.12080 (12)1.22442 (14)0.0321 (3)
H15A0.67080.12721.28680.039*
H15B0.70190.14161.15050.039*
C131.00061 (16)0.11111 (13)0.72528 (11)0.0303 (3)
H13A0.95010.15640.67220.036*
H13B1.05860.04970.69960.036*
C120.89936 (14)0.23105 (11)0.88715 (11)0.0263 (3)
C21.02875 (16)0.03277 (13)1.36888 (11)0.0304 (3)
H21.06960.04601.44080.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0291 (6)0.0164 (5)0.0257 (5)0.0021 (5)0.0069 (5)0.0005 (4)
O20.0309 (5)0.0174 (4)0.0253 (4)0.0031 (3)0.0029 (4)0.0023 (3)
C70.0202 (5)0.0206 (5)0.0221 (5)0.0010 (4)0.0013 (4)0.0030 (4)
C80.0239 (6)0.0254 (6)0.0244 (5)0.0037 (5)0.0003 (5)0.0048 (5)
C90.0200 (5)0.0245 (6)0.0289 (6)0.0036 (5)0.0014 (5)0.0027 (4)
O30.0499 (7)0.0262 (5)0.0356 (5)0.0061 (5)0.0000 (5)0.0081 (4)
C140.0277 (6)0.0168 (5)0.0366 (6)0.0020 (5)0.0027 (5)0.0014 (5)
C60.0195 (5)0.0148 (5)0.0248 (5)0.0006 (4)0.0012 (4)0.0001 (4)
C30.0330 (6)0.0233 (6)0.0259 (5)0.0079 (5)0.0076 (5)0.0017 (5)
O10.0493 (6)0.0366 (6)0.0297 (5)0.0062 (5)0.0165 (5)0.0008 (4)
C110.0233 (6)0.0207 (5)0.0261 (5)0.0040 (4)0.0015 (5)0.0001 (4)
C10.0288 (6)0.0252 (6)0.0297 (6)0.0015 (5)0.0043 (5)0.0036 (5)
C50.0202 (5)0.0171 (5)0.0217 (5)0.0007 (4)0.0021 (4)0.0002 (4)
C100.0212 (5)0.0186 (5)0.0241 (5)0.0011 (4)0.0022 (4)0.0000 (4)
C150.0310 (7)0.0263 (6)0.0391 (7)0.0033 (5)0.0129 (6)0.0040 (6)
C130.0314 (6)0.0337 (7)0.0257 (6)0.0050 (6)0.0028 (6)0.0006 (5)
C120.0303 (6)0.0219 (6)0.0266 (6)0.0028 (5)0.0002 (5)0.0019 (4)
C20.0358 (7)0.0301 (6)0.0253 (6)0.0048 (5)0.0011 (5)0.0048 (5)
Geometric parameters (Å, º) top
C4—C151.332 (2)C14—H14B0.960
C4—C31.4982 (18)C14—H14C0.960
C4—C51.5090 (16)C6—C51.5067 (16)
O2—C121.3659 (15)C6—H60.980
O2—C61.4708 (14)C3—O11.2260 (16)
C7—C111.4997 (17)C3—C21.473 (2)
C7—C81.5253 (18)C11—C131.3278 (18)
C7—C61.5287 (16)C11—C121.4991 (18)
C7—H70.980C1—C21.334 (2)
C8—C91.5439 (18)C1—C101.5167 (17)
C8—H8A0.970C1—H10.930
C8—H8B0.970C5—C101.5662 (15)
C9—C101.5437 (17)C5—H50.980
C9—H9A0.970C15—H15A0.930
C9—H9B0.970C15—H15B0.930
O3—C121.2059 (16)C13—H13A0.930
C14—C101.5490 (17)C13—H13B0.930
C14—H14A0.960C2—H20.930
C15—C4—C3119.26 (12)O1—C3—C2121.14 (13)
C15—C4—C5125.99 (12)O1—C3—C4122.53 (13)
C3—C4—C5114.71 (11)C2—C3—C4116.32 (11)
C12—O2—C6107.66 (9)C13—C11—C12123.86 (13)
C11—C7—C8123.60 (10)C13—C11—C7131.60 (13)
C11—C7—C699.69 (10)C12—C11—C7104.38 (10)
C8—C7—C6110.63 (10)C2—C1—C10123.39 (12)
C11—C7—H7107.3C2—C1—H1118.3
C8—C7—H7107.3C10—C1—H1118.3
C6—C7—H7107.3C6—C5—C4116.89 (10)
C7—C8—C9107.08 (10)C6—C5—C10107.51 (9)
C7—C8—H8A110.3C4—C5—C10109.63 (9)
C9—C8—H8A110.3C6—C5—H5107.5
C7—C8—H8B110.3C4—C5—H5107.5
C9—C8—H8B110.3C10—C5—H5107.5
H8A—C8—H8B108.6C1—C10—C9110.29 (10)
C10—C9—C8113.46 (10)C1—C10—C14106.58 (10)
C10—C9—H9A108.9C9—C10—C14110.22 (10)
C8—C9—H9A108.9C1—C10—C5106.91 (10)
C10—C9—H9B108.9C9—C10—C5110.69 (9)
C8—C9—H9B108.9C14—C10—C5112.02 (9)
H9A—C9—H9B107.7C4—C15—H15A120.0
C10—C14—H14A109.5C4—C15—H15B120.0
C10—C14—H14B109.5H15A—C15—H15B120.0
H14A—C14—H14B109.5C11—C13—H13A120.0
C10—C14—H14C109.5C11—C13—H13B120.0
H14A—C14—H14C109.5H13A—C13—H13B120.0
H14B—C14—H14C109.5O3—C12—O2121.23 (12)
O2—C6—C5115.13 (9)O3—C12—C11129.75 (13)
O2—C6—C7103.21 (9)O2—C12—C11109.00 (10)
C5—C6—C7111.05 (10)C1—C2—C3121.90 (12)
O2—C6—H6109.1C1—C2—H2119.1
C5—C6—H6109.1C3—C2—H2119.1
C7—C6—H6109.1
C11—C7—C8—C9176.53 (11)C15—C4—C5—C10124.67 (13)
C6—C7—C8—C958.75 (13)C3—C4—C5—C1052.90 (13)
C7—C8—C9—C1055.27 (14)C2—C1—C10—C9151.41 (13)
C12—O2—C6—C5153.05 (11)C2—C1—C10—C1488.95 (15)
C12—O2—C6—C731.88 (12)C2—C1—C10—C531.01 (17)
C11—C7—C6—O239.39 (11)C8—C9—C10—C1173.06 (11)
C8—C7—C6—O2171.01 (9)C8—C9—C10—C1469.52 (13)
C11—C7—C6—C5163.29 (9)C8—C9—C10—C554.96 (13)
C8—C7—C6—C565.10 (12)C6—C5—C10—C1175.55 (10)
C15—C4—C3—O120.6 (2)C4—C5—C10—C156.42 (12)
C5—C4—C3—O1161.68 (12)C6—C5—C10—C955.39 (12)
C15—C4—C3—C2158.27 (13)C4—C5—C10—C9176.57 (10)
C5—C4—C3—C219.48 (16)C6—C5—C10—C1468.06 (12)
C8—C7—C11—C1319.4 (2)C4—C5—C10—C1459.98 (12)
C6—C7—C11—C13142.26 (15)C6—O2—C12—O3170.70 (12)
C8—C7—C11—C12155.99 (11)C6—O2—C12—C1110.45 (13)
C6—C7—C11—C1233.14 (12)C13—C11—C12—O321.0 (2)
O2—C6—C5—C458.69 (14)C7—C11—C12—O3163.19 (14)
C7—C6—C5—C4175.49 (10)C13—C11—C12—O2160.33 (12)
O2—C6—C5—C10177.59 (9)C7—C11—C12—O215.53 (13)
C7—C6—C5—C1060.79 (12)C10—C1—C2—C32.2 (2)
C15—C4—C5—C62.05 (18)O1—C3—C2—C1169.28 (13)
C3—C4—C5—C6175.53 (10)C4—C3—C2—C19.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.393.360 (2)171
C14—H14A···O1i0.962.573.393 (2)143
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H16O3
Mr244.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)9.5648 (6), 11.1631 (6), 11.5542 (6)
V3)1233.67 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerOxford Diffraction Excalibur2 CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.909, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
12604, 2294, 1988
Rint0.016
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.05
No. of reflections2294
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.982.393.360 (2)171
C14—H14A···O1i0.962.573.393 (2)143
Symmetry code: (i) x+3/2, y, z1/2.
 

Acknowledgements

We thank the National Drug Development Platform (NDDP) and the NRF for funding.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBohlmann, F. & Zdero, C. (1982). Phytochemistry, 21, 647–651.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrass, S., Zidorn, C., Ellmerer, E. P. & Stuppner, H. (2004). Chem. Biodivers. 1, 353–360.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHiguchi, Y., Shimota, F., Koyanagi, R., Suda, K., Mitsui, T., Kataoka, T., Nagai, K. & Ando, M. (2003). J. Nat. Prod. 66, 588–594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds