organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,2S*)-1,2-Di-tert-butyl­glycol

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 28 November 2008; accepted 22 December 2008; online 24 December 2008)

In the crystal structure of the title compound, C10H22O2, co-operative chains of O—H⋯O hydrogen bonds are established by intra- as well as inter­molecular inter­actions. These hydrogen bonds connect the mol­ecules into infinite strands along [100], with a binary level graph-set descriptor C22(4). Excluding the H atoms on the hydr­oxy groups, the mol­ecule shows non-crystallographic C2 symmetry.

Related literature

The compound was synthesized according to a published procedure (Boehrer et al., 1997[Boehrer, G., Knorr, R., Boehrer, P. & Schubert, B. (1997). Liebigs Ann. Recl, pp. 193-202.]). For the crystal structures of other ethane-1,2-diol derivatives with bulky substituents, see: Betz & Klüfers (2007[Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4752.]); Allscher et al. (2008[Allscher, T., Betz, R., Herdlicka, S. & Klüfers, P. (2008). Acta Cryst. C64, o111-o113.]). For graph-set descriptors, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H22O2

  • Mr = 174.28

  • Orthorhombic, P 21 21 2

  • a = 9.7799 (3) Å

  • b = 16.3879 (7) Å

  • c = 6.9771 (3) Å

  • V = 1118.23 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 (2) K

  • 0.30 × 0.09 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8640 measured reflections

  • 1490 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.05

  • 1490 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H811⋯O2i 0.84 1.93 2.7721 (16) 176
O2—H821⋯O1 0.84 1.97 2.5129 (16) 121
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was synthesized as a potential chelating ligand with sterically demanding substituents on the carbon backbone to estimate the influence of steric pretense on coordination reactions with different central atoms.

In the molecule (Fig. 1) bond lengths and angles are found in the range apparent for other vicinal diols bearing sterically more demanding substituents (Betz & Klüfers, 2007, Allscher et al., 2008). While the tert-butyl groups adopt a staggered conformation with respect to the hydroxy groups, the O atoms are present in a nearly eclipsed arrangement. The reason for this unfavourable conformation becomes evident when examining intermolecular contacts.

In the crystal structure, inter- and intramolecular hydrogen bonds are present which connect the molecules into strands along [1 0 0] (Fig. 2). The bulky hydrophobic tert-butyl groups encase this strand of hydroxyl groups. The hydrogen bonds form cooperative chains. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the descriptor for these chains on the binary level is C22(4).

Excluding the H atoms on the hydroxy groups, the molecule shows non-crystallographic C2 symmetry.

The molecular packing of the title compound is shown in Figure 3.

Related literature top

The compound was synthesized according to a published procedure (Boehrer et al., 1997). For the crystal structures of other ethane-1,2-diol derivatives with bulky substituents, see: Betz & Klüfers (2007); Allscher et al. (2008). For graph-set descriptors, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title compound was prepared according to a published procedure (Boehrer et al., 1997). Crystals suitable for X-ray studies were obtained upon recrystallization from boiling toluene.

Refinement top

Due to the absence of a strong anomalous scatterer, the absolute structure parameter, which is 0.982 with an estimated standard deviation of 1.241 for the unmerged data set, is meaningless. Thus 1056 Friedel opposites have been merged and the absolute configuration has been arbitrarily chosen.

Carbon-bound as well as oxygen-bound H atoms were placed in calculated positions (C—H 1.00 Å for CH-groups, C—H 0.98 Å for methyl groups and O—H 0.84 Å for hydroxy groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for the CH-groups and 1.5Ueq(C) for methyl groups and 1.5Ueq(O) for the hydroxy groups.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonds in the crystal structure of the title compound, viewed along [0 0 1]. Underlying hydrogen bonds are not illustrated for clarity. Symmetry codes: ix + 1/2, -y + 1/2, -z + 2; iix - 1/2, -y + 1/2, -z + 2.
[Figure 3] Fig. 3. The packing of the title compound, viewed along [0 0 - 1].
(1S*,2S*)-1,2-Di-tert-butylglycol top
Crystal data top
C10H22O2F(000) = 392
Mr = 174.28Dx = 1.035 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 13560 reflections
a = 9.7799 (3) Åθ = 3.1–27.5°
b = 16.3879 (7) ŵ = 0.07 mm1
c = 6.9771 (3) ÅT = 200 K
V = 1118.23 (8) Å3Rod, colourless
Z = 40.30 × 0.09 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1253 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.040
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
CCD; rotation images; thick slices scansh = 1211
8640 measured reflectionsk = 1921
1490 independent reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0637P]
where P = (Fo2 + 2Fc2)/3
1490 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H22O2V = 1118.23 (8) Å3
Mr = 174.28Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 9.7799 (3) ŵ = 0.07 mm1
b = 16.3879 (7) ÅT = 200 K
c = 6.9771 (3) Å0.30 × 0.09 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1253 reflections with I > 2σ(I)
8640 measured reflectionsRint = 0.040
1490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
1490 reflectionsΔρmin = 0.15 e Å3
117 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13030 (11)0.30082 (8)0.96003 (18)0.0402 (3)
H8110.04760.29220.98570.060*
O20.35411 (12)0.22582 (8)0.9762 (2)0.0437 (4)
H8210.30540.25481.04840.066*
C10.16231 (16)0.26595 (10)0.7782 (2)0.0330 (4)
H10.07920.23710.72920.040*
C20.27611 (16)0.20174 (10)0.8121 (2)0.0332 (4)
H20.33860.20350.69880.040*
C30.19990 (19)0.33399 (11)0.6353 (3)0.0393 (4)
C40.0811 (2)0.39538 (13)0.6286 (3)0.0551 (6)
H410.07310.42280.75300.083*
H420.00420.36650.60010.083*
H430.09870.43600.52850.083*
C50.2176 (3)0.29796 (15)0.4358 (3)0.0628 (6)
H510.22810.34220.34240.094*
H520.13700.26530.40310.094*
H530.29920.26320.43350.094*
C60.3298 (2)0.37869 (13)0.6961 (3)0.0516 (5)
H610.40750.34090.69170.077*
H620.31880.39940.82700.077*
H630.34660.42440.60870.077*
C70.22584 (18)0.11294 (12)0.8338 (3)0.0409 (5)
C80.1634 (3)0.08512 (14)0.6441 (4)0.0687 (7)
H810.22740.09670.53940.103*
H820.07760.11450.62180.103*
H830.14530.02640.64940.103*
C90.1230 (2)0.10514 (15)0.9965 (4)0.0656 (7)
H910.09860.04761.01380.098*
H920.04070.13660.96530.098*
H930.16340.12621.11500.098*
C100.3495 (2)0.05872 (12)0.8749 (4)0.0542 (5)
H1010.38960.07400.99850.081*
H1020.41760.06580.77330.081*
H1030.32040.00150.87930.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (6)0.0536 (8)0.0349 (6)0.0056 (6)0.0041 (5)0.0067 (6)
O20.0344 (6)0.0518 (8)0.0448 (7)0.0046 (5)0.0136 (6)0.0073 (6)
C10.0260 (7)0.0416 (9)0.0314 (8)0.0013 (7)0.0020 (7)0.0047 (7)
C20.0251 (7)0.0428 (9)0.0317 (8)0.0007 (7)0.0004 (6)0.0032 (7)
C30.0397 (9)0.0446 (10)0.0334 (9)0.0051 (8)0.0020 (8)0.0026 (8)
C40.0548 (11)0.0537 (12)0.0568 (12)0.0140 (10)0.0059 (11)0.0094 (11)
C50.0841 (15)0.0716 (15)0.0327 (10)0.0129 (13)0.0028 (10)0.0025 (10)
C60.0452 (11)0.0493 (11)0.0602 (13)0.0051 (9)0.0029 (10)0.0121 (10)
C70.0341 (9)0.0374 (9)0.0513 (11)0.0025 (7)0.0012 (8)0.0015 (8)
C80.0733 (15)0.0485 (12)0.0843 (18)0.0004 (12)0.0263 (14)0.0208 (12)
C90.0580 (13)0.0499 (12)0.0889 (18)0.0016 (10)0.0295 (12)0.0095 (12)
C100.0463 (10)0.0435 (11)0.0729 (14)0.0087 (9)0.0010 (11)0.0023 (11)
Geometric parameters (Å, º) top
O1—C11.426 (2)C5—H530.980
O1—H8110.840C6—H610.980
O2—C21.431 (2)C6—H620.980
O2—H8210.840C6—H630.980
C1—C31.540 (3)C7—C91.522 (3)
C1—C21.550 (2)C7—C81.527 (3)
C1—H11.000C7—C101.528 (3)
C2—C71.543 (3)C8—H810.980
C2—H21.000C8—H820.980
C3—C51.522 (3)C8—H830.980
C3—C61.527 (3)C9—H910.980
C3—C41.538 (2)C9—H920.980
C4—H410.980C9—H930.980
C4—H420.980C10—H1010.980
C4—H430.980C10—H1020.980
C5—H510.980C10—H1030.980
C5—H520.980
C1—O1—H811109.5H52—C5—H53109.5
C2—O2—H821109.5C3—C6—H61109.5
O1—C1—C3109.77 (14)C3—C6—H62109.5
O1—C1—C2107.08 (13)H61—C6—H62109.5
C3—C1—C2114.77 (13)C3—C6—H63109.5
O1—C1—H1108.3H61—C6—H63109.5
C3—C1—H1108.3H62—C6—H63109.5
C2—C1—H1108.3C9—C7—C8110.91 (18)
O2—C2—C7110.58 (14)C9—C7—C10109.53 (17)
O2—C2—C1108.52 (13)C8—C7—C10107.79 (17)
C7—C2—C1115.24 (14)C9—C7—C2111.26 (16)
O2—C2—H2107.4C8—C7—C2108.91 (16)
C7—C2—H2107.4C10—C7—C2108.35 (14)
C1—C2—H2107.4C7—C8—H81109.5
C5—C3—C6110.22 (19)C7—C8—H82109.5
C5—C3—C4108.20 (17)H81—C8—H82109.5
C6—C3—C4108.86 (16)C7—C8—H83109.5
C5—C3—C1109.78 (16)H81—C8—H83109.5
C6—C3—C1111.47 (15)H82—C8—H83109.5
C4—C3—C1108.22 (14)C7—C9—H91109.5
C3—C4—H41109.5C7—C9—H92109.5
C3—C4—H42109.5H91—C9—H92109.5
H41—C4—H42109.5C7—C9—H93109.5
C3—C4—H43109.5H91—C9—H93109.5
H41—C4—H43109.5H92—C9—H93109.5
H42—C4—H43109.5C7—C10—H101109.5
C3—C5—H51109.5C7—C10—H102109.5
C3—C5—H52109.5H101—C10—H102109.5
H51—C5—H52109.5C7—C10—H103109.5
C3—C5—H53109.5H101—C10—H103109.5
H51—C5—H53109.5H102—C10—H103109.5
O1—C1—C2—O228.26 (17)O1—C1—C3—C455.45 (18)
C3—C1—C2—O293.86 (17)C2—C1—C3—C4176.09 (15)
O1—C1—C2—C796.34 (17)O2—C2—C7—C966.46 (19)
C3—C1—C2—C7141.55 (15)C1—C2—C7—C957.1 (2)
O1—C1—C3—C5173.34 (16)O2—C2—C7—C8170.99 (15)
C2—C1—C3—C566.0 (2)C1—C2—C7—C865.5 (2)
O1—C1—C3—C664.23 (18)O2—C2—C7—C1054.00 (19)
C2—C1—C3—C656.4 (2)C1—C2—C7—C10177.51 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H811···O2i0.841.932.7721 (16)176
O2—H821···O10.841.972.5129 (16)121
Symmetry code: (i) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H22O2
Mr174.28
Crystal system, space groupOrthorhombic, P21212
Temperature (K)200
a, b, c (Å)9.7799 (3), 16.3879 (7), 6.9771 (3)
V3)1118.23 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.09 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8640, 1490, 1253
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections1490
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H811···O2i0.841.932.7721 (16)175.5
O2—H821···O10.841.972.5129 (16)121.4
Symmetry code: (i) x1/2, y+1/2, z+2.
 

Acknowledgements

TK thanks the Hanns-Seidel-Stiftung for a PhD scholarship financed by the Bundesministerium für Bildung und Forschung.

References

First citationAllscher, T., Betz, R., Herdlicka, S. & Klüfers, P. (2008). Acta Cryst. C64, o111–o113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoehrer, G., Knorr, R., Boehrer, P. & Schubert, B. (1997). Liebigs Ann. Recl, pp. 193–202.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds