metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Tris[2-(5-bromo-2-oxido­benzyl­­idene­amino)eth­yl]amine}manganese(III)

aDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, and bSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 24 November 2008; accepted 9 December 2008; online 13 December 2008)

In the title complex, [Mn(C27H24Br3N4O3)], the MnIII ion is six-coordinated in a distorted octa­hedral environment by three N atoms and three O atoms from the trianion of the hexa­dentate ligand tris­[2-(5-bromo-2-oxidobenzyl­idene­amino)eth­yl]amine. All three N (and O) atoms are cis to each other. The three N and the three O atoms are in a fac conformation among each other.

Related literature

For related literature, see: Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C27H24Br3N4O3)]

  • Mr = 747.17

  • Triclinic, [P \overline 1]

  • a = 9.5892 (15) Å

  • b = 11.7558 (18) Å

  • c = 13.417 (2) Å

  • α = 80.041 (3)°

  • β = 78.084 (3)°

  • γ = 89.069 (3)°

  • V = 1457.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.422, Tmax = 0.631

  • 9621 measured reflections

  • 5820 independent reflections

  • 3794 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.238

  • S = 1.04

  • 5820 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 2.66 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn—O2 1.884 (5)
Mn—O1 1.905 (5)
Mn—N3 2.064 (6)
Mn—N2 2.073 (6)
Mn—O3 2.105 (5)
Mn—N1 2.369 (6)
O2—Mn—N3 169.7 (2)
O1—Mn—N2 171.2 (2)
O3—Mn—N1 169.35 (19)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [Mn(C27H24Br3N4O3)], the Mn3+ ion is six-coordinated in a distorted octahedral environment by three N atoms and three O atoms from the trianion of the hexadentate ligand N,N',N"-tris(5-bromosalicylidene)tris(2-aminoethyl)amine. All three N (and O) atoms are adjacent and lie in the facial position (Fig.1 and Fig.2). The apical O1—Mn—N2, O2—Mn—N3 and O3—Mn—N1 bond angles are 171.2 (2)°, 169.7 (2)° and 169.35 (19)°, respectively (Table 1). The Mn—N bonds are on average 0.204 Å longer than the Mn—O bonds (mean lengths: Mn—N 2.169 Å, Mn—O 1.965 Å).

Related literature top

For related literature, see: Hwang & Ha (2007); Mitra et al. (2006).

Experimental top

Mn(CH3COO)3.2H2O (0.50 g, 1.86 mmol) and N,N',N"-tris(5-bromosalicylidene)tris(2-aminoethyl)amine (Brsaltren; 1.30 g, 1.87 mmol) in EtOH (70 ml) were stirred for 3 h at room temparature. The formed precipitate was separated by filtration and washed with acetone, and dried under vacuum, to give a dark green powder (1.16 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone/EtOH solution. MS (FAB): m/z 746, 748, 750, 752 (Mn(Brsaltren-H)+); IR (KBr): 3448 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The CIF check program indicates a high ratio of the maximum and minimum residual density (5.09) in the structure and solvent accessible voids of 142 Å3. All these factors indicate a strong likelihood of disordered solvent molecules acetone or EtOH in the structure. However, the solvent molecule could neither be located nor refined. The distances between the highest difference peak (2.66 e Å-3) and the nearest peaks (1.96, 1.69 and 1.08 e Å-3) are 1.114, 1.540 and 1.137 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex.
{Tris[2-(5-bromo-2-oxidobenzylideneamino)ethyl]amine}manganese(III) top
Crystal data top
[Mn(C27H24Br3N4O3)]Z = 2
Mr = 747.17F(000) = 736
Triclinic, P1Dx = 1.703 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5892 (15) ÅCell parameters from 2848 reflections
b = 11.7558 (18) Åθ = 2.8–24.2°
c = 13.417 (2) ŵ = 4.60 mm1
α = 80.041 (3)°T = 293 K
β = 78.084 (3)°Plate, black
γ = 89.069 (3)°0.25 × 0.15 × 0.10 mm
V = 1457.3 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5820 independent reflections
Radiation source: fine-focus sealed tube3794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.422, Tmax = 0.631k = 1014
9621 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1477P)2]
where P = (Fo2 + 2Fc2)/3
5820 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 2.66 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mn(C27H24Br3N4O3)]γ = 89.069 (3)°
Mr = 747.17V = 1457.3 (4) Å3
Triclinic, P1Z = 2
a = 9.5892 (15) ÅMo Kα radiation
b = 11.7558 (18) ŵ = 4.60 mm1
c = 13.417 (2) ÅT = 293 K
α = 80.041 (3)°0.25 × 0.15 × 0.10 mm
β = 78.084 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5820 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3794 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 0.631Rint = 0.025
9621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.04Δρmax = 2.66 e Å3
5820 reflectionsΔρmin = 0.52 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.89446 (11)0.29092 (8)0.37296 (8)0.0339 (3)
Br10.43752 (9)0.63459 (7)0.07601 (7)0.0562 (3)
Br20.65915 (12)0.10364 (9)0.06388 (9)0.0773 (4)
Br30.92383 (12)0.21717 (12)0.94128 (7)0.0817 (4)
O10.8231 (6)0.4437 (4)0.3637 (4)0.0440 (13)
O20.7336 (5)0.2435 (4)0.3291 (4)0.0390 (12)
O30.7913 (6)0.2169 (4)0.5240 (4)0.0438 (12)
N10.9821 (6)0.3512 (5)0.1933 (4)0.0379 (14)
N20.9811 (6)0.1304 (5)0.3586 (4)0.0345 (13)
N31.0442 (6)0.3553 (5)0.4404 (5)0.0371 (14)
N41.2302 (6)0.2689 (5)0.2753 (5)0.0421 (14)
C10.7448 (8)0.4866 (6)0.2978 (6)0.0386 (16)
C20.6213 (9)0.5503 (7)0.3293 (6)0.0471 (19)
H20.59940.56180.39760.056*
C30.5340 (9)0.5950 (7)0.2667 (7)0.055 (2)
H30.45400.63540.29170.066*
C40.5650 (8)0.5800 (6)0.1638 (6)0.0423 (18)
C50.6844 (9)0.5206 (7)0.1259 (6)0.0475 (19)
H50.70410.51180.05690.057*
C60.7768 (8)0.4732 (6)0.1912 (6)0.0416 (17)
C70.8986 (8)0.4149 (6)0.1456 (6)0.0434 (18)
H70.91950.42400.07380.052*
C81.0976 (8)0.2977 (7)0.1326 (6)0.0445 (18)
H8A1.10760.33200.06030.053*
H8B1.07540.21610.13950.053*
C91.2362 (8)0.3111 (7)0.1653 (6)0.0462 (19)
H9A1.30900.26950.12510.055*
H9B1.26430.39220.14950.055*
C100.7244 (7)0.1687 (6)0.2679 (5)0.0332 (15)
C110.6176 (8)0.1814 (7)0.2102 (6)0.0440 (18)
H110.55710.24390.21310.053*
C120.6016 (8)0.1000 (7)0.1481 (6)0.0465 (19)
H120.53140.10920.10900.056*
C130.6884 (8)0.0077 (7)0.1451 (6)0.0451 (19)
C140.7932 (8)0.0056 (6)0.1990 (6)0.0422 (18)
H140.85130.06950.19530.051*
C150.8169 (7)0.0738 (6)0.2602 (5)0.0350 (15)
C160.9320 (8)0.0567 (6)0.3142 (6)0.0386 (16)
H160.97510.01490.31720.046*
C171.1154 (7)0.0991 (6)0.3940 (6)0.0381 (16)
H17A1.12180.01570.40990.046*
H17B1.11680.13010.45620.046*
C181.2411 (8)0.1481 (6)0.3092 (6)0.0430 (18)
H18A1.32840.13370.33480.052*
H18B1.24660.10850.25090.052*
C190.8246 (8)0.2186 (6)0.6102 (6)0.0398 (17)
C200.7371 (9)0.1565 (7)0.7023 (6)0.0442 (18)
H200.65700.11610.69710.053*
C210.7678 (9)0.1546 (7)0.8001 (6)0.050 (2)
H210.70970.11280.85880.060*
C220.8866 (9)0.2160 (7)0.8083 (6)0.049 (2)
C230.9756 (9)0.2779 (7)0.7228 (6)0.0463 (19)
H231.05420.31870.72990.056*
C240.9449 (8)0.2781 (6)0.6232 (6)0.0382 (16)
C251.0426 (9)0.3453 (6)0.5379 (6)0.0421 (18)
H251.11320.38660.55540.051*
C261.1647 (8)0.4255 (6)0.3728 (6)0.0451 (18)
H26A1.20060.47730.41110.054*
H26B1.13320.47170.31460.054*
C271.2823 (8)0.3454 (7)0.3340 (6)0.0460 (19)
H27A1.36280.39090.29060.055*
H27B1.31440.30020.39230.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0380 (6)0.0287 (6)0.0393 (6)0.0037 (4)0.0134 (5)0.0116 (5)
Br10.0540 (5)0.0463 (5)0.0767 (6)0.0125 (4)0.0318 (5)0.0126 (4)
Br20.0940 (8)0.0649 (7)0.0999 (9)0.0106 (6)0.0553 (7)0.0468 (6)
Br30.0812 (8)0.1293 (11)0.0422 (6)0.0090 (7)0.0231 (5)0.0234 (6)
O10.053 (3)0.035 (3)0.054 (3)0.010 (2)0.025 (3)0.020 (2)
O20.037 (3)0.038 (3)0.048 (3)0.008 (2)0.013 (2)0.017 (2)
O30.048 (3)0.050 (3)0.037 (3)0.005 (2)0.015 (2)0.012 (2)
N10.039 (3)0.038 (3)0.038 (3)0.005 (3)0.008 (3)0.008 (3)
N20.031 (3)0.034 (3)0.041 (3)0.002 (2)0.010 (3)0.010 (3)
N30.045 (4)0.028 (3)0.043 (4)0.003 (3)0.014 (3)0.012 (3)
N40.039 (3)0.039 (4)0.048 (4)0.000 (3)0.010 (3)0.006 (3)
C10.040 (4)0.028 (4)0.050 (4)0.000 (3)0.012 (3)0.011 (3)
C20.057 (5)0.044 (4)0.044 (4)0.008 (4)0.013 (4)0.017 (4)
C30.043 (5)0.042 (5)0.088 (7)0.014 (4)0.022 (4)0.026 (4)
C40.044 (4)0.029 (4)0.059 (5)0.008 (3)0.023 (4)0.008 (3)
C50.057 (5)0.043 (5)0.046 (5)0.001 (4)0.020 (4)0.005 (4)
C60.042 (4)0.032 (4)0.052 (5)0.004 (3)0.015 (4)0.004 (3)
C70.048 (5)0.045 (4)0.039 (4)0.001 (4)0.009 (4)0.014 (3)
C80.049 (5)0.044 (4)0.041 (4)0.008 (4)0.007 (3)0.010 (3)
C90.039 (4)0.045 (5)0.052 (5)0.004 (3)0.006 (4)0.007 (4)
C100.033 (4)0.030 (4)0.036 (4)0.008 (3)0.004 (3)0.006 (3)
C110.036 (4)0.050 (5)0.051 (5)0.008 (3)0.011 (3)0.021 (4)
C120.039 (4)0.048 (5)0.059 (5)0.001 (3)0.020 (4)0.017 (4)
C130.050 (5)0.040 (4)0.054 (5)0.000 (4)0.021 (4)0.023 (4)
C140.043 (4)0.037 (4)0.050 (5)0.004 (3)0.011 (4)0.016 (3)
C150.033 (4)0.031 (4)0.044 (4)0.003 (3)0.010 (3)0.011 (3)
C160.040 (4)0.031 (4)0.048 (4)0.008 (3)0.012 (3)0.015 (3)
C170.036 (4)0.036 (4)0.046 (4)0.005 (3)0.016 (3)0.010 (3)
C180.040 (4)0.041 (4)0.050 (5)0.005 (3)0.010 (3)0.014 (4)
C190.044 (4)0.032 (4)0.045 (4)0.004 (3)0.010 (3)0.013 (3)
C200.050 (5)0.042 (4)0.044 (4)0.006 (4)0.009 (4)0.017 (3)
C210.051 (5)0.054 (5)0.043 (5)0.010 (4)0.003 (4)0.012 (4)
C220.058 (5)0.061 (5)0.035 (4)0.016 (4)0.017 (4)0.024 (4)
C230.054 (5)0.049 (5)0.042 (4)0.006 (4)0.020 (4)0.015 (4)
C240.046 (4)0.030 (4)0.042 (4)0.003 (3)0.014 (3)0.012 (3)
C250.056 (5)0.025 (4)0.051 (5)0.005 (3)0.019 (4)0.013 (3)
C260.053 (5)0.035 (4)0.047 (5)0.008 (4)0.009 (4)0.008 (3)
C270.037 (4)0.041 (4)0.059 (5)0.007 (3)0.005 (4)0.011 (4)
Geometric parameters (Å, º) top
Mn—O21.884 (5)C9—H9A0.9700
Mn—O11.905 (5)C9—H9B0.9700
Mn—N32.064 (6)C10—C111.397 (10)
Mn—N22.073 (6)C10—C151.418 (9)
Mn—O32.105 (5)C11—C121.403 (10)
Mn—N12.369 (6)C11—H110.9300
Br1—C41.898 (7)C12—C131.357 (10)
Br2—C131.901 (7)C12—H120.9300
Br3—C221.892 (7)C13—C141.346 (10)
O1—C11.306 (8)C14—C151.396 (9)
O2—C101.319 (8)C14—H140.9300
O3—C191.265 (8)C15—C161.433 (9)
N1—C71.280 (9)C16—H160.9300
N1—C81.438 (9)C17—C181.519 (10)
N2—C161.278 (9)C17—H17A0.9700
N2—C171.482 (8)C17—H17B0.9700
N3—C251.291 (9)C18—H18A0.9700
N3—C261.476 (10)C18—H18B0.9700
N4—C181.424 (9)C19—C241.416 (10)
N4—C271.449 (9)C19—C201.429 (11)
N4—C91.464 (10)C20—C211.400 (10)
C1—C21.420 (10)C20—H200.9300
C1—C61.435 (10)C21—C221.392 (12)
C2—C31.343 (10)C21—H210.9300
C2—H20.9300C22—C231.379 (12)
C3—C41.392 (12)C23—C241.426 (10)
C3—H30.9300C23—H230.9300
C4—C51.382 (11)C24—C251.442 (11)
C5—C61.414 (10)C25—H250.9300
C5—H50.9300C26—C271.523 (10)
C6—C71.426 (10)C26—H26A0.9700
C7—H70.9300C26—H26B0.9700
C8—C91.501 (10)C27—H27A0.9700
C8—H8A0.9700C27—H27B0.9700
C8—H8B0.9700
O2—Mn—O189.3 (2)C11—C10—C15118.6 (6)
O2—Mn—N3169.7 (2)C10—C11—C12120.0 (7)
O1—Mn—N384.2 (2)C10—C11—H11120.0
O2—Mn—N288.6 (2)C12—C11—H11120.0
O1—Mn—N2171.2 (2)C13—C12—C11120.1 (7)
N3—Mn—N298.9 (2)C13—C12—H12120.0
O2—Mn—O386.9 (2)C11—C12—H12120.0
O1—Mn—O3101.1 (2)C14—C13—C12121.0 (7)
N3—Mn—O386.5 (2)C14—C13—Br2120.2 (6)
N2—Mn—O387.3 (2)C12—C13—Br2118.9 (6)
O2—Mn—N183.2 (2)C13—C14—C15121.8 (7)
O1—Mn—N182.7 (2)C13—C14—H14119.1
N3—Mn—N1103.9 (2)C15—C14—H14119.1
N2—Mn—N188.5 (2)C14—C15—C10118.5 (6)
O3—Mn—N1169.35 (19)C14—C15—C16119.5 (6)
C1—O1—Mn123.1 (4)C10—C15—C16122.0 (6)
C10—O2—Mn129.3 (4)N2—C16—C15126.4 (6)
C19—O3—Mn130.7 (5)N2—C16—H16116.8
C7—N1—C8117.9 (6)C15—C16—H16116.8
C7—N1—Mn115.4 (5)N2—C17—C18109.2 (6)
C8—N1—Mn124.4 (5)N2—C17—H17A109.8
C16—N2—C17115.8 (6)C18—C17—H17A109.8
C16—N2—Mn124.4 (5)N2—C17—H17B109.8
C17—N2—Mn119.6 (4)C18—C17—H17B109.8
C25—N3—C26114.3 (6)H17A—C17—H17B108.3
C25—N3—Mn127.1 (5)N4—C18—C17112.4 (6)
C26—N3—Mn118.5 (5)N4—C18—H18A109.1
C18—N4—C27117.0 (6)C17—C18—H18A109.1
C18—N4—C9118.5 (6)N4—C18—H18B109.1
C27—N4—C9117.8 (6)C17—C18—H18B109.1
O1—C1—C2120.7 (7)H18A—C18—H18B107.9
O1—C1—C6123.1 (6)O3—C19—C24124.5 (7)
C2—C1—C6116.2 (7)O3—C19—C20119.2 (7)
C3—C2—C1124.2 (8)C24—C19—C20116.3 (7)
C3—C2—H2117.9C21—C20—C19122.2 (7)
C1—C2—H2117.9C21—C20—H20118.9
C2—C3—C4119.1 (7)C19—C20—H20118.9
C2—C3—H3120.4C22—C21—C20119.0 (8)
C4—C3—H3120.4C22—C21—H21120.5
C5—C4—C3120.7 (7)C20—C21—H21120.5
C5—C4—Br1119.4 (6)C23—C22—C21121.9 (7)
C3—C4—Br1119.8 (6)C23—C22—Br3119.3 (6)
C4—C5—C6120.6 (8)C21—C22—Br3118.8 (7)
C4—C5—H5119.7C22—C23—C24118.8 (7)
C6—C5—H5119.7C22—C23—H23120.6
C5—C6—C7117.0 (7)C24—C23—H23120.6
C5—C6—C1119.2 (7)C19—C24—C23121.8 (7)
C7—C6—C1123.8 (7)C19—C24—C25122.9 (6)
N1—C7—C6126.7 (7)C23—C24—C25115.3 (7)
N1—C7—H7116.7N3—C25—C24128.0 (7)
C6—C7—H7116.7N3—C25—H25116.0
N1—C8—C9112.1 (6)C24—C25—H25116.0
N1—C8—H8A109.2N3—C26—C27109.1 (6)
C9—C8—H8A109.2N3—C26—H26A109.9
N1—C8—H8B109.2C27—C26—H26A109.9
C9—C8—H8B109.2N3—C26—H26B109.9
H8A—C8—H8B107.9C27—C26—H26B109.9
N4—C9—C8113.7 (7)H26A—C26—H26B108.3
N4—C9—H9A108.8N4—C27—C26110.2 (6)
C8—C9—H9A108.8N4—C27—H27A109.6
N4—C9—H9B108.8C26—C27—H27A109.6
C8—C9—H9B108.8N4—C27—H27B109.6
H9A—C9—H9B107.7C26—C27—H27B109.6
O2—C10—C11119.0 (6)H27A—C27—H27B108.1
O2—C10—C15122.4 (6)
O2—Mn—O1—C130.1 (6)C8—N1—C7—C6178.5 (7)
N3—Mn—O1—C1158.0 (6)Mn—N1—C7—C615.1 (10)
O3—Mn—O1—C1116.8 (6)C5—C6—C7—N1168.3 (7)
N1—Mn—O1—C153.1 (6)C1—C6—C7—N112.2 (12)
O1—Mn—O2—C10142.7 (6)C7—N1—C8—C9133.5 (7)
N3—Mn—O2—C10166.1 (11)Mn—N1—C8—C964.7 (8)
N2—Mn—O2—C1028.8 (6)C18—N4—C9—C880.4 (8)
O3—Mn—O2—C10116.1 (6)C27—N4—C9—C8129.2 (7)
N1—Mn—O2—C1059.9 (6)N1—C8—C9—N455.0 (9)
O2—Mn—O3—C19173.2 (6)Mn—O2—C10—C11152.4 (6)
O1—Mn—O3—C1984.5 (6)Mn—O2—C10—C1529.2 (9)
N3—Mn—O3—C191.1 (6)O2—C10—C11—C12177.1 (7)
N2—Mn—O3—C1998.0 (6)C15—C10—C11—C121.3 (11)
N1—Mn—O3—C19165.3 (9)C10—C11—C12—C131.0 (12)
O2—Mn—N1—C751.5 (5)C11—C12—C13—C141.8 (13)
O1—Mn—N1—C738.7 (5)C11—C12—C13—Br2177.8 (6)
N3—Mn—N1—C7120.9 (5)C12—C13—C14—C150.3 (13)
N2—Mn—N1—C7140.3 (5)Br2—C13—C14—C15179.4 (6)
O3—Mn—N1—C773.1 (12)C13—C14—C15—C102.1 (12)
O2—Mn—N1—C8110.7 (6)C13—C14—C15—C16178.6 (8)
O1—Mn—N1—C8159.1 (6)O2—C10—C15—C14175.6 (7)
N3—Mn—N1—C876.9 (6)C11—C10—C15—C142.8 (10)
N2—Mn—N1—C821.9 (6)O2—C10—C15—C163.6 (11)
O3—Mn—N1—C889.1 (12)C11—C10—C15—C16177.9 (7)
O2—Mn—N2—C1611.6 (6)C17—N2—C16—C15170.2 (7)
N3—Mn—N2—C16175.5 (6)Mn—N2—C16—C155.0 (11)
O3—Mn—N2—C1698.5 (6)C14—C15—C16—N2167.7 (7)
N1—Mn—N2—C1671.7 (6)C10—C15—C16—N213.1 (12)
O2—Mn—N2—C17173.4 (5)C16—N2—C17—C1892.1 (7)
N3—Mn—N2—C170.5 (5)Mn—N2—C17—C1883.4 (6)
O3—Mn—N2—C1786.5 (5)C27—N4—C18—C1785.2 (8)
N1—Mn—N2—C17103.3 (5)C9—N4—C18—C17124.2 (7)
O2—Mn—N3—C2546.9 (15)N2—C17—C18—N453.6 (8)
O1—Mn—N3—C2598.5 (6)Mn—O3—C19—C242.1 (11)
N2—Mn—N3—C2589.8 (6)Mn—O3—C19—C20177.6 (5)
O3—Mn—N3—C253.1 (6)O3—C19—C20—C21179.9 (7)
N1—Mn—N3—C25179.5 (6)C24—C19—C20—C210.1 (10)
O2—Mn—N3—C26130.0 (12)C19—C20—C21—C220.7 (11)
O1—Mn—N3—C2678.4 (5)C20—C21—C22—C230.6 (12)
N2—Mn—N3—C2693.3 (5)C20—C21—C22—Br3177.9 (6)
O3—Mn—N3—C26180.0 (5)C21—C22—C23—C240.3 (12)
N1—Mn—N3—C262.6 (5)Br3—C22—C23—C24178.8 (5)
Mn—O1—C1—C2135.6 (6)O3—C19—C24—C23179.2 (7)
Mn—O1—C1—C644.6 (9)C20—C19—C24—C231.1 (10)
O1—C1—C2—C3178.6 (7)O3—C19—C24—C250.8 (11)
C6—C1—C2—C31.5 (12)C20—C19—C24—C25179.4 (6)
C1—C2—C3—C40.6 (13)C22—C23—C24—C191.2 (11)
C2—C3—C4—C50.5 (13)C22—C23—C24—C25179.7 (7)
C2—C3—C4—Br1176.4 (6)C26—N3—C25—C24176.3 (7)
C3—C4—C5—C60.5 (12)Mn—N3—C25—C246.7 (11)
Br1—C4—C5—C6176.3 (6)C19—C24—C25—N35.6 (12)
C4—C5—C6—C7179.1 (7)C23—C24—C25—N3176.0 (7)
C4—C5—C6—C10.5 (12)C25—N3—C26—C2797.6 (7)
O1—C1—C6—C5178.8 (7)Mn—N3—C26—C2785.1 (7)
C2—C1—C6—C51.4 (11)C18—N4—C27—C26123.4 (7)
O1—C1—C6—C71.7 (12)C9—N4—C27—C2685.7 (8)
C2—C1—C6—C7178.1 (7)N3—C26—C27—N460.4 (8)

Experimental details

Crystal data
Chemical formula[Mn(C27H24Br3N4O3)]
Mr747.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5892 (15), 11.7558 (18), 13.417 (2)
α, β, γ (°)80.041 (3), 78.084 (3), 89.069 (3)
V3)1457.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.422, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
9621, 5820, 3794
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.238, 1.04
No. of reflections5820
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.66, 0.52

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Mn—O21.884 (5)Mn—N22.073 (6)
Mn—O11.905 (5)Mn—O32.105 (5)
Mn—N32.064 (6)Mn—N12.369 (6)
O2—Mn—N3169.7 (2)O3—Mn—N1169.35 (19)
O1—Mn—N2171.2 (2)
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds