metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­[(1,10-phenanthroline)iron(II)]-bis­­(μ-5-carb­oxy­benzene-1,3-di­carboxyl­ato)]

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 25 November 2008; accepted 29 November 2008; online 6 December 2008)

The asymmetric unit of the title compound, [Fe(C9H4O6)(C12H8N2)(H2O)]n, contains one FeII cation, one 5-carboxy­benzene-1,3-dicarboxyl­ate dianion (Hbtc), one 1,10-phenanthroline (phen) ligand and one water mol­ecule. The FeII centre displays a distorted octa­hedral geometry, being surrounded by one phen ligand, two μ2-O atoms of two carboxyl­ate groups from two Hbtc ligands, one O atom from one carboxyl­ate of another Hbtc ligand and one terminal water mol­ecule. One carboxyl­ate group ligates two FeII cations in a μ1,1 mode, while the other carboxyl­ate groups bonds to only one Fe atom. The crystal structure is stabilized by O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Plater et al. (2001[Plater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., Coronado, E., Gomez-Garcia, C. J., Gelbrich, T. & Hursthouse, M. B. (2001). Inorg. Chim. Acta, 319, 159-175.]). For general background, see: Yang et al. (2008[Yang, J., Lu, N., Zhang, G., Cheng, L. & Gou, S.-H. (2008). Polyhedron, 27, 2119-2126.]); Bradshaw et al. (2004[Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. (2004). J. Am. Chem. Soc. 126, 6106-6114.]); Chui et al. (1999[Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C9H4O6)(C12H8N2)(H2O)]

  • Mr = 462.19

  • Triclinic, [P \overline 1]

  • a = 9.5925 (15) Å

  • b = 10.8971 (16) Å

  • c = 11.1998 (17) Å

  • α = 96.221 (3)°

  • β = 111.320 (2)°

  • γ = 111.736 (2)°

  • V = 972.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.866

  • 7689 measured reflections

  • 3798 independent reflections

  • 3228 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.05

  • 3798 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.85 (4) 1.79 (4) 2.602 (3) 159 (3)
O1W—H1WB⋯O4ii 0.80 (4) 1.94 (4) 2.740 (3) 172 (3)
O3—H3A⋯O6iii 0.79 (4) 1.86 (4) 2.622 (3) 160 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years have witnessed an explosion of great interest in hybrid organic–inorganic framework solids not only for their intriguing architectures and topologies, but also for their potential applications in optical, electrical, magnetic and microporous materials (Yang et al., 2008). And benzene-1,3,5-tricarboxylic acid has been widely used to construct many novel and interesting metal–organic frameworks (Bradshaw et al., 2004; Chui et al., 1999). Herein, we present the synthesis and structural characterization of a new one-dimensional compound [Fe(Hbtc)(phen)]n (H3btc = benzene-1,3,5-tricarboxylic acid; phen = 1,10-phenanthroline) using H3btc as a ligand.

The asymmetric unit of the title compound, contains a FeII cation, a dianion of Hbtc and a chelating phen. In the compound, each FeII displays a distorted octahedral geometry, being surrounded by one phen ligand, two µ2-O atoms of two carboxylates coming from two Hbtc ligands, one O atom from one carboxylate of another Hbtc and one terminal water molecule. The Hbtc ligand coming from the deprotonation of two carboxylates of H3btc acts as a dianion, in which one carboxylate ligates two FeII cations in the µ1,1 mode with the Fe—O—Fe angle at 102.75 (7)° and Fe···Fe distance of 3.38 (3) Å, to form a Fe2 unit; while the other carboxylate adopts a monodentate mode. Thus, the adjacent Fe2 units are linked each other by a pair of tridentate Hbtc ligands in head-to-tail into a one-dimensional chain. The shortest Fe···Fe distance separated by Hbtc ligands is 10.90 (3) Å. Further, the one-dimensional chains are stabled by intrachain hydrogen bonding between coordinated water molecules and adjacent uncoordinated O atoms of monodentate carboxylates with the O···O distance of 2.602 (3) Å. Finally, the one-dimensional chains are further linked together by the interchain hydrogen bonding between uncoordinated carboxylates and uncoordinated O atoms of coordinated µ2-carboxylates as well as coordinated water molecules into a two-dimensional supramolecular network.

Related literature top

For related structures, see: Plater et al. (2001). For general background, see: Yang et al. (2008); Bradshaw et al. (2004); Chui et al. (1999).

Experimental top

A mixture of H3btc (0.0210 g, 0.1 mmol), phen (0.0180 g, 0.1 mmol), FeCl2.4H2O (0.0199 g, 0.1 mmol) and H2O (8 ml) was heated in a 15 ml Teflon-lined autoclave at 160 ° for 3 d, followed by slow cooling (5 ° h-1) to room temperature. The resulting mixture was washed with water, and red block crystals were collected and dried in air (yield 32%, 14.8 mg) based on FeII].

Refinement top

The H atoms bonded to O atom were located in a difference map and freely refined. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Fe2 structure of the title compound with 30% thermal ellipsoids. All the H atoms on the C atoms are omitted for clarity. Symmetry codes: a: 1 - x, 2 - y, 1 - z; b: 1 - x, 1 - y, 1 - z; c: x, 1 + y, z.
[Figure 2] Fig. 2. The one-dimensional chain of the title compound. All the H atoms have been omitted for clarity.
catena-Poly[bis[(1,10-phenanthroline)iron(II)]-bis(µ-5-carboxybenzene- 1,3-dicarboxylato)] top
Crystal data top
[Fe(C9H4O6)(C12H8N2)(H2O)]Z = 2
Mr = 462.19F(000) = 472
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5925 (15) ÅCell parameters from 785 reflections
b = 10.8971 (16) Åθ = 2.5–28.0°
c = 11.1998 (17) ŵ = 0.82 mm1
α = 96.221 (3)°T = 293 K
β = 111.320 (2)°Block, red
γ = 111.736 (2)°0.25 × 0.22 × 0.18 mm
V = 972.3 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
3798 independent reflections
Radiation source: fine-focus sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1111
Tmin = 0.821, Tmax = 0.866k = 1313
7689 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.209P]
where P = (Fo2 + 2Fc2)/3
3798 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Fe(C9H4O6)(C12H8N2)(H2O)]γ = 111.736 (2)°
Mr = 462.19V = 972.3 (3) Å3
Triclinic, P1Z = 2
a = 9.5925 (15) ÅMo Kα radiation
b = 10.8971 (16) ŵ = 0.82 mm1
c = 11.1998 (17) ÅT = 293 K
α = 96.221 (3)°0.25 × 0.22 × 0.18 mm
β = 111.320 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3798 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3228 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.866Rint = 0.024
7689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
3798 reflectionsΔρmin = 0.22 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.61551 (4)0.98060 (3)0.64542 (3)0.02290 (12)
C10.4072 (3)0.4212 (2)0.3242 (2)0.0203 (5)
C20.5643 (3)0.4812 (2)0.3283 (2)0.0238 (5)
H2A0.61620.42660.31740.029*
C30.6454 (3)0.6223 (2)0.3487 (2)0.0240 (5)
C40.5696 (3)0.7048 (2)0.3685 (2)0.0239 (5)
H4A0.62390.79940.38290.029*
C50.4132 (3)0.6459 (2)0.3669 (2)0.0202 (5)
C60.3329 (3)0.5041 (2)0.3441 (2)0.0218 (5)
H6A0.22770.46430.34210.026*
C70.3235 (3)0.2700 (2)0.3103 (2)0.0244 (5)
C80.8159 (3)0.6886 (3)0.3565 (3)0.0320 (6)
C90.3293 (3)0.7313 (2)0.3927 (2)0.0234 (5)
C100.2781 (3)0.8910 (3)0.6674 (3)0.0393 (7)
H10A0.23410.82350.58800.047*
C110.1720 (4)0.8963 (4)0.7242 (4)0.0556 (9)
H11A0.06020.83260.68410.067*
C120.2347 (5)0.9959 (4)0.8387 (4)0.0585 (10)
H12A0.16531.00110.87730.070*
C130.4026 (4)1.0903 (3)0.8989 (3)0.0491 (8)
C140.4804 (6)1.1991 (5)1.0193 (4)0.0739 (12)
H14A0.41651.21001.06150.089*
C150.6433 (6)1.2854 (4)1.0726 (4)0.0753 (12)
H15A0.68911.35711.14920.090*
C160.7479 (5)1.2701 (3)1.0150 (3)0.0525 (9)
C170.9206 (5)1.3534 (4)1.0703 (3)0.0640 (10)
H17A0.97261.42691.14650.077*
C181.0113 (4)1.3257 (4)1.0116 (3)0.0648 (10)
H18A1.12621.37881.04870.078*
C190.9317 (4)1.2178 (3)0.8961 (3)0.0461 (7)
H19A0.99551.20090.85680.055*
C200.6769 (4)1.1637 (3)0.8977 (3)0.0349 (6)
C210.5017 (4)1.0749 (3)0.8375 (3)0.0340 (6)
N10.4379 (3)0.9776 (2)0.7216 (2)0.0291 (5)
N20.7682 (3)1.1375 (2)0.8391 (2)0.0322 (5)
O10.1824 (2)0.22146 (18)0.3066 (2)0.0449 (5)
O20.4051 (2)0.20291 (16)0.30592 (18)0.0295 (4)
O30.8788 (3)0.6020 (2)0.3450 (3)0.0548 (7)
O40.8901 (2)0.8094 (2)0.3733 (3)0.0625 (7)
O50.42061 (19)0.86215 (15)0.44513 (16)0.0249 (4)
O60.1789 (2)0.67369 (18)0.3605 (2)0.0378 (5)
O1W0.8228 (2)0.9974 (2)0.6184 (2)0.0413 (5)
H1WA0.847 (4)0.935 (4)0.648 (4)0.073 (12)*
H1WB0.902 (4)1.053 (4)0.613 (3)0.065 (12)*
H3A0.971 (5)0.642 (4)0.353 (4)0.093 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0206 (2)0.01554 (19)0.0350 (2)0.00822 (15)0.01468 (15)0.00608 (14)
C10.0202 (12)0.0166 (12)0.0260 (12)0.0084 (10)0.0118 (10)0.0063 (9)
C20.0235 (12)0.0199 (12)0.0328 (13)0.0127 (10)0.0146 (10)0.0058 (10)
C30.0207 (12)0.0199 (12)0.0334 (13)0.0083 (10)0.0148 (10)0.0066 (10)
C40.0213 (12)0.0156 (12)0.0339 (13)0.0064 (10)0.0134 (11)0.0051 (10)
C50.0178 (11)0.0171 (12)0.0282 (12)0.0081 (10)0.0124 (10)0.0053 (10)
C60.0154 (11)0.0202 (12)0.0289 (12)0.0065 (10)0.0106 (10)0.0056 (10)
C70.0224 (13)0.0180 (12)0.0333 (13)0.0087 (10)0.0128 (11)0.0080 (10)
C80.0254 (13)0.0264 (14)0.0492 (16)0.0112 (12)0.0220 (12)0.0100 (12)
C90.0238 (13)0.0179 (12)0.0319 (13)0.0106 (10)0.0142 (11)0.0074 (10)
C100.0308 (15)0.0423 (17)0.0510 (17)0.0155 (13)0.0242 (14)0.0153 (14)
C110.0382 (18)0.077 (3)0.073 (2)0.0316 (18)0.0369 (18)0.034 (2)
C120.068 (2)0.090 (3)0.070 (2)0.057 (2)0.056 (2)0.043 (2)
C130.068 (2)0.062 (2)0.0497 (19)0.0456 (19)0.0408 (18)0.0234 (17)
C140.109 (4)0.094 (3)0.062 (2)0.068 (3)0.057 (3)0.021 (2)
C150.115 (4)0.077 (3)0.049 (2)0.059 (3)0.039 (2)0.001 (2)
C160.077 (2)0.0453 (19)0.0344 (16)0.0313 (19)0.0193 (17)0.0080 (14)
C170.081 (3)0.042 (2)0.0379 (18)0.018 (2)0.0070 (18)0.0034 (15)
C180.051 (2)0.049 (2)0.049 (2)0.0016 (17)0.0024 (17)0.0040 (17)
C190.0371 (17)0.0394 (17)0.0456 (17)0.0084 (14)0.0109 (14)0.0088 (14)
C200.0495 (17)0.0289 (14)0.0306 (14)0.0212 (13)0.0174 (13)0.0106 (12)
C210.0480 (17)0.0347 (15)0.0366 (15)0.0275 (14)0.0247 (13)0.0178 (13)
N10.0299 (12)0.0272 (12)0.0390 (12)0.0157 (10)0.0204 (10)0.0121 (10)
N20.0311 (12)0.0250 (12)0.0351 (12)0.0091 (10)0.0123 (10)0.0078 (10)
O10.0269 (10)0.0238 (10)0.0952 (16)0.0128 (9)0.0344 (11)0.0246 (11)
O20.0312 (10)0.0181 (9)0.0514 (11)0.0141 (8)0.0265 (9)0.0132 (8)
O30.0302 (12)0.0282 (11)0.116 (2)0.0128 (10)0.0452 (13)0.0108 (12)
O40.0372 (12)0.0277 (12)0.141 (2)0.0130 (10)0.0576 (14)0.0292 (13)
O50.0248 (9)0.0146 (8)0.0364 (9)0.0090 (7)0.0146 (7)0.0055 (7)
O60.0203 (9)0.0232 (9)0.0718 (13)0.0096 (8)0.0239 (9)0.0070 (9)
O1W0.0315 (11)0.0269 (11)0.0819 (16)0.0154 (10)0.0366 (11)0.0248 (11)
Geometric parameters (Å, º) top
Fe1—O1W2.063 (2)C11—C121.356 (5)
Fe1—O2i2.0873 (16)C11—H11A0.9300
Fe1—O5ii2.1554 (15)C12—C131.393 (5)
Fe1—N12.157 (2)C12—H12A0.9300
Fe1—O52.1746 (17)C13—C211.404 (4)
Fe1—N22.192 (2)C13—C141.431 (5)
C1—C21.384 (3)C14—C151.339 (5)
C1—C61.387 (3)C14—H14A0.9300
C1—C71.502 (3)C15—C161.423 (5)
C2—C31.390 (3)C15—H15A0.9300
C2—H2A0.9300C16—C201.402 (4)
C3—C41.395 (3)C16—C171.404 (5)
C3—C81.487 (3)C17—C181.358 (5)
C4—C51.388 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.388 (4)
C5—C61.392 (3)C18—H18A0.9300
C5—C91.504 (3)C19—N21.329 (3)
C6—H6A0.9300C19—H19A0.9300
C7—O11.240 (3)C20—N21.358 (3)
C7—O21.262 (3)C20—C211.430 (4)
C8—O41.196 (3)C21—N11.352 (3)
C8—O31.312 (3)O2—Fe1i2.0873 (16)
C9—O61.228 (3)O3—H3A0.79 (4)
C9—O51.290 (3)O5—Fe1ii2.1554 (15)
C10—N11.318 (3)O1W—H1WA0.85 (4)
C10—C111.396 (4)O1W—H1WB0.80 (4)
C10—H10A0.9300
O1W—Fe1—O2i89.06 (7)C12—C11—H11A120.5
O1W—Fe1—O5ii96.92 (7)C10—C11—H11A120.5
O2i—Fe1—O5ii166.10 (7)C11—C12—C13120.3 (3)
O1W—Fe1—N1166.83 (9)C11—C12—H12A119.9
O2i—Fe1—N187.61 (7)C13—C12—H12A119.9
O5ii—Fe1—N189.21 (7)C12—C13—C21117.1 (3)
O1W—Fe1—O5100.00 (8)C12—C13—C14124.5 (3)
O2i—Fe1—O589.38 (6)C21—C13—C14118.4 (3)
O5ii—Fe1—O577.25 (6)C15—C14—C13121.4 (3)
N1—Fe1—O592.70 (7)C15—C14—H14A119.3
O1W—Fe1—N292.32 (9)C13—C14—H14A119.3
O2i—Fe1—N2103.69 (7)C14—C15—C16121.6 (3)
O5ii—Fe1—N288.65 (7)C14—C15—H15A119.2
N1—Fe1—N276.12 (8)C16—C15—H15A119.2
O5—Fe1—N2162.22 (7)C20—C16—C17117.3 (3)
C2—C1—C6119.2 (2)C20—C16—C15118.8 (3)
C2—C1—C7120.7 (2)C17—C16—C15123.9 (3)
C6—C1—C7119.9 (2)C18—C17—C16119.4 (3)
C1—C2—C3120.6 (2)C18—C17—H17A120.3
C1—C2—H2A119.7C16—C17—H17A120.3
C3—C2—H2A119.7C17—C18—C19119.7 (3)
C2—C3—C4119.7 (2)C17—C18—H18A120.1
C2—C3—C8121.2 (2)C19—C18—H18A120.1
C4—C3—C8119.0 (2)N2—C19—C18122.9 (3)
C5—C4—C3120.1 (2)N2—C19—H19A118.5
C5—C4—H4A120.0C18—C19—H19A118.5
C3—C4—H4A120.0N2—C20—C16122.8 (3)
C4—C5—C6119.3 (2)N2—C20—C21117.4 (2)
C4—C5—C9122.0 (2)C16—C20—C21119.8 (3)
C6—C5—C9118.73 (19)N1—C21—C13122.4 (3)
C1—C6—C5121.0 (2)N1—C21—C20117.5 (2)
C1—C6—H6A119.5C13—C21—C20120.1 (3)
C5—C6—H6A119.5C10—N1—C21118.4 (2)
O1—C7—O2125.2 (2)C10—N1—Fe1126.62 (19)
O1—C7—C1118.0 (2)C21—N1—Fe1114.93 (17)
O2—C7—C1116.7 (2)C19—N2—C20117.7 (2)
O4—C8—O3122.9 (2)C19—N2—Fe1128.4 (2)
O4—C8—C3123.5 (2)C20—N2—Fe1113.40 (17)
O3—C8—C3113.5 (2)C7—O2—Fe1i129.65 (15)
O6—C9—O5124.0 (2)C8—O3—H3A110 (3)
O6—C9—C5118.6 (2)C9—O5—Fe1ii125.52 (15)
O5—C9—C5117.3 (2)C9—O5—Fe1131.19 (15)
N1—C10—C11122.7 (3)Fe1ii—O5—Fe1102.75 (6)
N1—C10—H10A118.6Fe1—O1W—H1WA106 (2)
C11—C10—H10A118.6Fe1—O1W—H1WB141 (2)
C12—C11—C10118.9 (3)H1WA—O1W—H1WB109 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.85 (4)1.79 (4)2.602 (3)159 (3)
O1W—H1WB···O4iii0.80 (4)1.94 (4)2.740 (3)172 (3)
O3—H3A···O6iv0.79 (4)1.86 (4)2.622 (3)160 (4)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C9H4O6)(C12H8N2)(H2O)]
Mr462.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5925 (15), 10.8971 (16), 11.1998 (17)
α, β, γ (°)96.221 (3), 111.320 (2), 111.736 (2)
V3)972.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.821, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
7689, 3798, 3228
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.05
No. of reflections3798
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.85 (4)1.79 (4)2.602 (3)159 (3)
O1W—H1WB···O4ii0.80 (4)1.94 (4)2.740 (3)172 (3)
O3—H3A···O6iii0.79 (4)1.86 (4)2.622 (3)160 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. (2004). J. Am. Chem. Soc. 126, 6106–6114.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPlater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., Coronado, E., Gomez-Garcia, C. J., Gelbrich, T. & Hursthouse, M. B. (2001). Inorg. Chim. Acta, 319, 159–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Lu, N., Zhang, G., Cheng, L. & Gou, S.-H. (2008). Polyhedron, 27, 2119–2126.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds